Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(12): 5842-5850, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36995289

RESUMEN

Plasmonic polymeric nanoassemblies offer valuable opportunities in photoconversion applications. Localized surface plasmon mechanisms behind such nanoassemblies govern their functionalities under light illumination. However, an in-depth investigation at the single nanoparticle (NP) level is still challenging, especially when the buried interface is involved, due to the availability of suitable techniques. Here, we synthesized an anisotropic heterodimer composed of a self-assembled polymer vesicle (THPG) capped with a single gold NP, enabling an 8-fold enhancement in hydrogen generation compared to the nonplasmonic THPG vesicle. We explored the anisotropic heterodimer at the single particle level by employing advanced transmission electron microscopes, including one equipped with a femtosecond pulsed laser, which allows us to visualize the polarization- and frequency-dependent distribution of the enhanced electric near fields at the vicinity of Au cap and Au-polymer interface. These elaborated fundamental findings may guide designing new hybrid nanostructures tailored for plasmon-related applications.

2.
Small ; 18(19): e2200627, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35411712

RESUMEN

Layered Ni-rich lithium transition metal oxides are promising cathode materials for high-energy-density lithium-ion batteries. These cathodes, however, suffer from rapid performance decay under high-voltage operation. In this work, the electrochemical properties and structural evolution of the LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) cathode upon high-voltage cycling are investigated. The results show that the NMC811 cathode not only experiences surface evolution with the formation of Li-deficient rock-salt layers, but also suffers from drastic intragranular structural changes inside bulk grains after high-voltage cycling. Direct evidence for the formation of transition-metal/Li disordering domains with uneven Li content and lattice plane distortion at the internal grains of 4.6 V-cycled NMC811 are provided with their atomic ordering and spatial distribution clearly resolved. The complex intragranular structural changes impede Li+ diffusion inside bulk material, resulting in kinetic limitation and capacity loss. The results demonstrate that the high-voltage cycling would induce severe structural degradation at the grain interior of the cathode material beyond surface evolution, which contributes significantly to the rapid performance decay of the NMC811 cathode. The findings provide new insights for developing effective countermeasures to mitigate this degradation pathway.

3.
Nano Lett ; 20(6): 4346-4353, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32369701

RESUMEN

Enhanced electromagnetic fields in nanometer gaps of plasmonic structures increase the optical interaction with matter, including Raman scattering and optical absorption. Quantum electron tunneling across sub-1 nm gaps, however, lowers these effects again. Understanding these phenomena requires controlled variation of gap sizes. Mechanically actuated plasmonic antennas enable repeatable tuning of gap sizes from the weak-coupling over the quantum-electron-tunneling to the direct-electrical-contact regime. Gap sizes are controlled electrically via leads that only weakly disturb plasmonic modes. Conductance signals show a near-continuous transition from electron tunneling to metallic contact. As the antenna's absorption cross-section is reduced, thermal expansion effects are negligible, in contrast to conventional break-junctions. Optical scattering spectra reveal first continuous red shifts for decreasing gap sizes and then blue shifts below gaps of 0.3 nm. The approach provides pathways to study opto- and electromolecular processes at the limit of plasmonic sensing.

4.
Nano Lett ; 20(11): 8258-8266, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33026227

RESUMEN

With their ns2 np3 valence electronic configuration, pnictogens are the only system to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light pnictogens crystallize in the A17 phase, and bulk heavier elements prefer the A7 phase. Herein, we demonstrate that the A17 of heavy pnictogens can be stabilized in antimonene grown on weakly interacting surfaces and that it undergoes a spontaneous thickness-driven transformation to the stable A7 phase. At a critical thickness of ∼4 nm, A17 antimony transforms from AB- to AA-stacked α-antimonene by a diffusionless shuffle transition followed by a gradual relaxation to the A7 phase. Furthermore, the competition between A7- and A17-like bonding affects the electronic structure of the intermediate phase. These results highlight the critical role of the atomic structure and substrate-layer interactions in shaping the stability and properties of layered materials, thus enabling a new degree of freedom to engineer their performance.

5.
Small ; 16(3): e1906540, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31880095

RESUMEN

Alloying in group V 2D materials and heterostructures is an effective degree of freedom to tailor and enhance their physical properties. Up to date, black arsenic-phosphorus is the only 2D group V alloy that has been experimentally achieved by exfoliation, leaving all other possible alloys in the realm of theoretical predictions. Herein, the existence of an additional alloy consisting of 2D antimony arsenide (2D-Asx Sb1- x ) grown by molecular beam epitaxy on group IV semiconductor substrates and graphene is demonstrated. The atomic mixing of As and Sb in the lattice of the grown 2D layers is confirmed by low-energy electron diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The As content in 2D-Asx Sb1- x is shown to depend linearly on the As4 /Sb4 deposition rate ratio and As concentrations up to 15 at% are reached. The grown 2D alloys are found to be stable in ambient conditions in a timescale of weeks but to oxidize after longer exposure to air. This study lays the groundwork for a better control of the growth and alloying of group V 2D materials, which is critical to study their basic physical properties and integrate them in novel applications.

6.
Small ; 16(43): e2003096, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33015944

RESUMEN

Configuring metal single-atom catalysts (SACs) with high electrocatalytic activity and stability is one efficient strategy in achieving the cost-competitive catalyst for fuel cells' applications. Herein, the atomic layer deposition (ALD) strategy for synthesis of Pt SACs on the metal-organic framework (MOF)-derived N-doped carbon (NC) is proposed. Through adjusting the ALD exposure time of the Pt precursor, the size-controlled Pt catalysts, from Pt single atoms to subclusters and nanoparticles, are prepared on MOF-NC support. X-ray absorption fine structure spectra determine the increased electron vacancy in Pt SACs and indicate the Pt-N coordination in the as-prepared Pt SACs. Benefiting from the low-coordination environment and anchoring interaction between Pt atoms and nitrogen-doping sites from MOF-NC support, the Pt SACs deliver an enhanced activity and stability with 6.5 times higher mass activity than that of Pt nanoparticle catalysts in boosting the oxygen reduction reaction (ORR). Density functional theory calculations indicate that Pt single atoms prefer to be anchored by the pyridinic N-doped carbon sites. Importantly, it is revealed that the electronic structure of Pt SAs can be adjusted by adsorption of hydroxyl and oxygen, which greatly lowers free energy change for the rate-determining step and enhances the activity of Pt SACs toward the ORR.

7.
J Chem Phys ; 153(22): 224703, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317278

RESUMEN

The surface plasmon response of a cross-sectional segment of a wrinkled gold film is studied using electron energy loss spectroscopy (EELS). EELS data demonstrate that wrinkled gold structures act as a suitable substrate for surface plasmons to propagate. The intense surface variations in these structures facilitate the resonance of a wide range of surface plasmons, leading to the broadband surface plasmon response of these geometries from the near-infrared to visible wavelengths. The metallic nanoparticle boundary element method toolbox is used to simulate plasmon eigenmodes in these structures. Eigenmode simulations show how the diverse morphology of the wrinkled structure leads to its high spectral complexity. Micron-sized structural features that do not provide interactions between segments of the wrinkle have only a small effect on the surface plasmon resonance response, whereas nanofeatures strongly affect the resonant modes of the geometry. According to eigenmode calculations, different eigenenergy shifts around the sharp folds contribute to the broadband response and infrared activity of these structures; these geometrical features also support higher energy (shorter wavelength) symmetric and anti-symmetric plasmon coupling across the two sides of the folds. It is also shown that additional plasmon eigenstates are introduced from hybridization of modes across nanogaps between structural features in close proximity to each other. All of these factors contribute to the broadband response of the wrinkled gold structures.

8.
Angew Chem Int Ed Engl ; 59(34): 14313-14320, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32463932

RESUMEN

Li- and Mn-rich layered oxides are among the most promising cathode materials for Li-ion batteries with high theoretical energy density. Its practical application is, however, hampered by the capacity and voltage fade after long cycling. Herein, a finite difference method for near-edge structure (FDMNES) code was combined with in situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) to investigate the evolution of transition metals (TMs) in fresh and heavily cycled electrodes. Theoretical modeling reveals a recurring partially reversible LiMn2 O4 -like sub-nanodomain formation/dissolution process during each charge/discharge, which accumulates gradually and accounts for the Mn phase transition. From the modeling of spectra and maps of the valence state over large regions of the cathodes, it was found that the phase change is size-dependent. After prolonged cycling, the TMs displayed different levels of inactivity.

9.
Angew Chem Int Ed Engl ; 59(31): 12860-12867, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32379944

RESUMEN

Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO2 conversion remains an unsolved challenge. Among a series of ternary Sn-Ti-O electrocatalysts, 3D ordered mesoporous (3DOM) Sn0.3 Ti0.7 O2 achieves a trade-off between active-site exposure and structural stability, demonstrating up to 71.5 % half-cell EE over 200 hours, and a 94.5 % Faradaic efficiency for CO at an overpotential as low as 430 mV. DFT and X-ray absorption fine structure analyses reveal an electron density reconfiguration in the Sn-Ti-O system. A downshift of the orbital band center of Sn and a charge depletion of Ti collectively facilitate the dissociative adsorption of the desired intermediate COOH* for CO formation. It is also beneficial in maintaining a local alkaline environment to suppress H2 and formate formation, and in stabilizing oxygen atoms to prolong durability. These findings provide a new strategy in materials design for efficient CO2 conversion and beyond.

10.
Langmuir ; 35(4): 862-869, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30645125

RESUMEN

Electrodeposition is widely used to fabricate tunable nanostructured materials in applications ranging from biosensing to energy conversion. A model based on 3D island growth is widely accepted in the explanation of the initial stages of nucleation and growth in electrodeposition. However, there are regions in the electrodeposition parameter space where this model becomes inapplicable. We use liquid cell transmission electron microscopy along with post situ scanning electron microscopy to investigate electrodeposition in this parameter space, focusing on the effect of the supporting electrolyte, and to shed light on the nucleation and growth of palladium. Using a collection of electron microscopy images and current time transients recorded during electrodeposition, we discover that electrochemical aggregative growth, rather than 3D island growth, best describes the electrodeposition process. We then use this model to explain the change in the morphology of palladium electrodeposits from spherical to open clusters with nonspherical morphology when HCl is added to the electrolyte solution. The enhanced understanding of the early stages of palladium nucleation and growth and the role of electrolyte in this process provides a systematic route toward the electrochemical fabrication of nanostructured materials.

11.
Nano Lett ; 18(10): 6530-6537, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30216079

RESUMEN

Photoelectrochemical water splitting is a clean and environmentally friendly method for solar hydrogen generation. Its practical application, however, has been limited by the poor stability of semiconductor photoelectrodes. In this work, we demonstrate the use of GaN nanostructures as a multifunctional protection layer for an otherwise unstable, low-performance photocathode. The direct integration of GaN nanostructures on n+-p Si wafer not only protects Si surface from corrosion but also significantly reduces the charge carrier transfer resistance at the semiconductor/liquid junction, leading to long-term stability (>100 h) at a large current density (>35 mA/cm2) under 1 sun illumination. The measured applied bias photon-to-current efficiency of 10.5% is among the highest values ever reported for a Si photocathode. Given that both Si and GaN are already widely produced in industry, our studies offer a viable path for achieving high-efficiency and highly stable semiconductor photoelectrodes for solar water splitting with proven manufacturability and scalability.

12.
Nature ; 490(7420): 384-7, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23051749

RESUMEN

The determination of the atomic structure and the retrieval of information about reconstruction and bonding of metal oxide surfaces is challenging owing to the highly defective structure and insulating properties of these surfaces. Transmission electron microscopy (TEM) offers extremely high spatial resolution (less than one ångström) and the ability to provide systematic information from both real and reciprocal space. However, very few TEM studies have been carried out on surfaces because the information from the bulk dominates the very weak signals originating from surfaces. Here we report an experimental approach to extract surface information effectively from a thickness series of electron energy-loss spectra containing different weights of surface signals, using a wedge-shaped sample. Using the (001) surface of the technologically important compound strontium titanate, SrTiO(3) (refs 4-6), as a model system for validation, our method shows that surface spectra are sensitive to the atomic reconstruction and indicate bonding and crystal-field changes surrounding the surface Ti cations. Very good agreement can be achieved between the experimental surface spectra and crystal-field multiplet calculations based on the proposed atomic surface structure optimized by density functional calculations. The distorted TiO(6-x) units indicated by the proposed model can be viewed directly in our high-resolution scanning TEM images. We suggest that this approach be used as a general method to extract valuable spectroscopic information from surface atoms in parallel with high-resolution images in TEM.

13.
Nano Lett ; 17(6): 3738-3743, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28471682

RESUMEN

Aluminum-rich AlGaN is the ideal material system for emerging solid-state deep-ultraviolet (DUV) light sources. Devices operating in the near-UV spectral range have been realized; to date, however, the achievement of high-efficiency light-emitting diodes (LEDs) operating in the UV-C band (200-280 nm specifically) has been hindered by the extremely inefficient p-type conduction in AlGaN and the lack of DUV-transparent conductive electrodes. Here, we show that these critical challenges can be addressed by Mg dopant-free Al(Ga)N/h-BN nanowire heterostructures. By exploiting the acceptor-like boron vacancy formation, we have demonstrated that h-BN can function as a highly conductive, DUV-transparent electrode; the hole concentration is ∼1020 cm-3 at room temperature, which is 10 orders of magnitude higher than that previously measured for Mg-doped AlN epilayers. We have further demonstrated the first Al(Ga)N/h-BN LED, which exhibits strong emission at ∼210 nm. This work also reports the first achievement of Mg-free III-nitride LEDs that can exhibit high electrical efficiency (80% at 20 A/cm2).

14.
Angew Chem Int Ed Engl ; 57(38): 12440-12443, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30043544

RESUMEN

Micrometer-sized functional nucleic acid (FNA) superstructures (denoted as 3D DNA) were examined as a unique class of biorecognition elements to produce highly functional bioactive paper surfaces. 3D DNA containing repeating sequences of either a DNA aptamer or DNAzyme was created from long-chain products of rolling circle amplification followed by salt aging. The resulting 3D DNA retained its original spherical shape upon inkjet printing and adhered strongly to the paper surface via physisorption. 3D DNA paper sensors showed resistance to degradation by nucleases, suppressed nonspecific protein adsorption, and provided a much higher surface density of functional DNA relative to monomeric FNAs, making such species ideally suited for development of paper-based biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Papel , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , ADN/metabolismo , ADN Catalítico/química , ADN Catalítico/metabolismo , Técnicas de Amplificación de Ácido Nucleico , Tamaño de la Partícula
15.
Opt Express ; 25(24): 30494-30502, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221077

RESUMEN

Semiconductor light sources operating in the ultraviolet (UV)-C band (100-280 nm) are in demand for a broad range of applications but suffer from extremely low efficiency. AlGaN nanowire photonic crystals promise to break the efficiency bottleneck of deep UV photonics. We report, for the first time, site-controlled epitaxy of AlGaN nanowire arrays with Al incorporation controllably varied across nearly the entire compositional range. It is also observed that an Al-rich AlGaN shell structure is spontaneously formed, significantly suppressing nonradiative surface recombination. An internal quantum efficiency up to 45% was measured at room-temperature. We have further demonstrated large area AlGaN nanowire LEDs operating in the UV-C band on sapphire substrate, which exhibit excellent optical and electrical performance, including a small turn-on voltage of ~4.4 V and an output power of ~0.93 W/cm2 at a current density of 252 A/cm2. The controlled synthesis of AlGaN subwavelength nanostructures with well-defined size, spacing, and spatial arrangement and tunable emission opens up new opportunities for developing high efficiency LEDs and lasers and promises to break the efficiency bottleneck of deep UV photonics.

16.
Microsc Microanal ; 23(2): 385-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28322178

RESUMEN

Improved understanding of the interactions between solutes and the austenite/ferrite interface can benefit modeling of ferrite growth during austenite decomposition, as the transformation kinetic is significantly affected by solutes that influence interface mobility. Solute-interface interactions dominate solute segregation at the interface in binary systems, but in multi-component alloys, solute-solute interactions may also affect segregation. In this study, interface segregation in Fe-Mn-N is examined and compared with Fe-Mn-C, to reveal the extent to which C affects the segregation of Mn. Atom probe tomography (APT) is well-suited to analyze solute concentrations across the interface, as this technique combines high spatial resolution and compositional sensitivity. Measurements of Mn show that segregation is only observed for Fe-Mn-C. This demonstrates that Mn segregation is primarily driven by an affinity for C, which also segregates to the interface. However, the measurement of N in steels by APT may be affected by a variety of experimental factors. Therefore, in verifying the Fe-Mn-N result, systematic examination is conducted on the influence of pulsing method (voltage versus laser), sample preparation (ion milling versus electropolishing), and vacuum storage on the measured N concentration. Both laser pulsing and focused ion beam sample preparation are observed to decrease the apparent N concentration.

17.
Nano Lett ; 16(7): 4608-15, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27332859

RESUMEN

Multicolor single InGaN/GaN dot-in-nanowire light emitting diodes (LEDs) were fabricated on the same substrate using selective area epitaxy. It is observed that the structural and optical properties of InGaN/GaN quantum dots depend critically on nanowire diameters. Photoluminescence emission of single InGaN/GaN dot-in-nanowire structures exhibits a consistent blueshift with increasing nanowire diameter. This is explained by the significantly enhanced indium (In) incorporation for nanowires with small diameters, due to the more dominant contribution for In incorporation from the lateral diffusion of In adatoms. Single InGaN/GaN nanowire LEDs with emission wavelengths across nearly the entire visible spectral were demonstrated on a single chip by varying the nanowire diameters. Such nanowire LEDs also exhibit superior electrical performance, with a turn-on voltage ∼2 V and negligible leakage current under reverse bias. The monolithic integration of full-color LEDs on a single chip, coupled with the capacity to tune light emission characteristics at the single nanowire level, provides an unprecedented approach to realize ultrasmall and efficient projection display, smart lighting, and on-chip spectrometer.

18.
Phys Chem Chem Phys ; 18(42): 29064-29075, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27711529

RESUMEN

Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNixMnyCo1-x-yO2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni2+ (active) and Co3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.

19.
Nano Lett ; 15(10): 6413-8, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26348690

RESUMEN

Ternary III-nitride based nanowires (NWs) are promising for optoelectronic applications by offering advantageous design and control over composition, structure, and strain. Atomic-level chemical ordering in wurtzite InGaN alloys along the c-plane direction with a 1:1 periodicity within InGaN/GaN NW heterostructures was investigated by scanning transmission electron microscopy. Atomic-number-sensitive imaging contrast was used to simultaneously assign the In-rich and Ga-rich planes and determine the crystal polarity to differentiate unique sublattice sites. The nonrandom occupation of the c-planes in the InGaN alloys is confirmed by the occurrence of additional superlattice spots in the diffraction pattern within the ternary alloy. Compositional modulations in the ordered InGaN was further studied using atomic-resolution elemental mapping, outlining the substantial In-enrichment. Confirming the preferential site occupation of In-atoms provides experimental validation for the previous theoretical model of ordered InGaN alloys in bulk epilayers based on differences in surface site energy. Therefore, this study strongly suggests that atomic ordering in InGaN has a surface energetics-induced origin. Optimization of atomic ordering, in particular in III-nitride NW heterostructures, could be an alternative design tool toward desirable structural and compositional properties for various device applications operating at longer visible wavelengths.

20.
Nano Lett ; 15(4): 2721-6, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25811636

RESUMEN

H2 generation under sunlight offers great potential for a sustainable fuel production system. To achieve high efficiency solar-to-hydrogen conversion, multijunction photoelectrodes have been commonly employed to absorb a large portion of the solar spectrum and to provide energetic charge carriers for water splitting. However, the design and performance of such tandem devices has been fundamentally limited by the current matching between various absorbing layers. Here, by exploiting the lateral carrier extraction scheme of one-dimensional nanowire structures, we have demonstrated that a dual absorber photocathode, consisting of p-InGaN/tunnel junction/n-GaN nanowire arrays and a Si solar cell wafer, can operate efficiently without the strict current matching requirement. The monolithically integrated photocathode exhibits an applied bias photon-to-current efficiency of 8.7% at a potential of 0.33 V versus normal hydrogen electrode and nearly unity Faradaic efficiency for H2 generation. Such an adaptive multijunction architecture can surpass the design and performance restrictions of conventional tandem photoelectrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA