Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(2): e21361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33522017

RESUMEN

Bcl-2-associated athanogen-6 (BAG6) is a nucleocytoplasmic shuttling protein involved in protein quality control. We previously demonstrated that BAG6 is essential for autophagy by regulating the intracellular localization of the acetyltransferase EP300, and thus, modifying accessibility to its substrates (TP53 in the nucleus and autophagy-related proteins in the cytoplasm). Here, we investigated BAG6 localization and function in the cytoplasm. First, we demonstrated that BAG6 is localized in the mitochondria. Specifically, BAG6 is expressed in the mitochondrial matrix under basal conditions, and translocates to the outer mitochondrial membrane after mitochondrial depolarization with carbonyl cyanide m-chlorophenyl hydrazine, a mitochondrial uncoupler that induces mitophagy. In SW480 cells, the deletion of BAG6 expression abrogates its ability to induce mitophagy and PINK1 accumulation. On the reverse, its ectopic expression in LoVo colon cancer cells, which do not express endogenous BAG6, reduces the size of the mitochondria, induces mitophagy, leads to the activation of the PINK1/PARKIN pathway and to the phospho-ubiquitination of mitochondrial proteins. Finally, BAG6 contains two LIR (LC3-interacting Region) domains specifically found in receptors for selective autophagy and responsible for the interaction with LC3 and for autophagosome selectivity. Site-directed mutagenesis showed that BAG6 requires wild-type LIRs domains for its ability to stimulate mitophagy. In conclusion, we propose that BAG6 is a novel mitophagy receptor or adaptor that induces PINK1/PARKIN signaling and mitophagy in a LIR-dependent manner.


Asunto(s)
Mitofagia , Chaperonas Moleculares/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Sitios de Unión , Línea Celular Tumoral , Humanos , Mitocondrias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo
2.
Environ Sci Technol ; 55(24): 16489-16501, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34843233

RESUMEN

Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.


Asunto(s)
Disruptores Endocrinos , Preparaciones Farmacéuticas , Animales , Ligandos , Ratones , PPAR gamma , Pez Cebra
3.
Environ Sci Technol ; 54(15): 9510-9518, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32650635

RESUMEN

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20ß-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.


Asunto(s)
Progesterona , Progestinas , Animales , Humanos , Mifepristona/farmacología , Receptores de Progesterona , Pez Cebra
4.
Cell Mol Life Sci ; 76(23): 4769-4781, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31127318

RESUMEN

The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50-500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12.


Asunto(s)
Disruptores Endocrinos/química , Receptores de Estrógenos/metabolismo , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/farmacología , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/farmacología , Humanos , Ligandos , Simulación de Dinámica Molecular , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Termodinámica , Activación Transcripcional/efectos de los fármacos
5.
Toxicol Appl Pharmacol ; 380: 114709, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31415773

RESUMEN

The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5 × ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERß-dependent) at higher concentrations. BPC induced zfERß-mediated luciferase expression in vitro, and the zfERß agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Estrógenos no Esteroides/toxicidad , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Embrión no Mamífero , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores de Estrógenos/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Mol Pharm ; 13(8): 2647-60, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367273

RESUMEN

Mesoporous silica nanoparticles (MSNs) were covalently coated with antioxidant molecules, namely, caffeic acid (MSN-CAF) or rutin (MSN-RUT), in order to diminish the impact of oxidative stress induced after transfection into cells, thus generating safer carriers used for either drug delivery or other applications. Two cellular models involved in the entry of NPs in the body were used for this purpose: the intestinal Caco-2 and the epidermal HaCaT cell lines. Rutin gave the best results in terms of antioxidant capacities preservation during coupling procedures, cellular toxicity alleviation, and decrease of ROS level after 24 h incubation of cells with grafted nanoparticles. These protective effects of rutin were found more pronounced in HaCaT than in Caco-2 cells, indicating some cellular specificity toward defense against oxidative stress. In order to gain more insight about the Nrf2 response, a stable transfected HaCaT cell line bearing repeats of the antioxidant response element (ARE) in front of a luciferase reporter gene was generated. In this cell line, both tBHQ and quercetin (Nrf2 agonists), but not rutin, were able to induce, in a dose-dependent fashion, the luciferase response. Interestingly, at high concentration, MSN-RUT was able to induce a strong Nrf2 protective response in HaCaT cells, accompanied by a comparable induction of HO-1 mRNA. The level of these responses was again less important in Caco-2 cells. To conclude, in keratinocyte cell line, the coupling of rutin to silica nanoparticles was beneficial in term of ROS reduction, cellular viability, and protective effects mediated through the activation of the Nrf2 antioxidant pathway.


Asunto(s)
Antioxidantes/química , Nanopartículas/química , Dióxido de Silicio/química , Antioxidantes/farmacología , Células CACO-2 , Catecoles/química , Catecoles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Hidroquinonas/química , Hidroquinonas/farmacología , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Quercetina/química , Quercetina/farmacología
7.
Proc Natl Acad Sci U S A ; 109(37): 14930-5, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927406

RESUMEN

Bisphenol A (BPA) is an industrial compound and a well known endocrine-disrupting chemical with estrogenic activity. The widespread exposure of individuals to BPA is suspected to affect a variety of physiological functions, including reproduction, development, and metabolism. Here we report that the mechanisms by which BPA and two congeners, bisphenol AF and bisphenol C (BPC), bind to and activate estrogen receptors (ER) α and ß differ from that used by 17ß-estradiol. We show that bisphenols act as partial agonists of ERs by activating the N-terminal activation function 1 regardless of their effect on the C-terminal activation function 2, which ranges from weak agonism (with BPA) to antagonism (with BPC). Crystallographic analysis of the interaction between bisphenols and ERs reveals two discrete binding modes, reflecting the different activities of compounds on ERs. BPA and 17ß-estradiol bind to ERs in a similar fashion, whereas, with a phenol ring pointing toward the activation helix H12, the orientation of BPC accounts for the marked antagonist character of this compound. Based on structural data, we developed a protocol for in silico evaluation of the interaction between bisphenols and ERs or other members of the nuclear hormone receptor family, such as estrogen-related receptor γ and androgen receptor, which are two known main targets of bisphenols. Overall, this study provides a wealth of tools and information that could be used for the development of BPA substitutes devoid of nuclear hormone receptor-mediated activity and more generally for environmental risk assessment.


Asunto(s)
Disruptores Endocrinos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Modelos Moleculares , Fenoles/metabolismo , Animales , Compuestos de Bencidrilo , Línea Celular , Cromatografía en Gel , Cristalografía , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/química , Estradiol/metabolismo , Receptor alfa de Estrógeno/aislamiento & purificación , Receptor beta de Estrógeno/aislamiento & purificación , Polarización de Fluorescencia , Humanos , Luciferasas , Oncorhynchus mykiss , Fenoles/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Toxicol Appl Pharmacol ; 280(1): 60-9, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25106122

RESUMEN

Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERß), whereas the zebrafish genome encodes three ERs, zfERα and two zfERßs (zfERß1 and zfERß2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERß selective agonists displayed greater potency for zfERα as compared to zfERßs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.


Asunto(s)
Exposición a Riesgos Ambientales , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/efectos adversos , Estrógenos/química , Estrógenos/farmacología , Femenino , Genes Reporteros/fisiología , Células HeLa , Humanos , Datos de Secuencia Molecular , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Pez Cebra
9.
Front Endocrinol (Lausanne) ; 14: 1235501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654569

RESUMEN

Introduction: The action of environmental steroids on the human glucocorticoid receptor (hGR) has been pointed out with the risk to impair physiological immune and metabolic processes regulated by this nuclear receptor. However, there is still a lack of mechanistic information regarding their ability to interact with GR in aquatic species. Methods: To investigate ligand activation differences between hGR and zebrafish GR (zfGR), we tested several natural and synthetic steroids using reporter cell lines expressing hGR or zfGR. Results and discussion: Almost all the glucocorticoids tested (dexamethasone, cortisol, bimedrazol, medrol, cortivazol and fluticasone) are agonists of the two receptors with similar potencies. The dissociated glucocorticoids, RU24782 and RU24858 are agonists of both zfGR and hGR but with a better potency for the latter. On the other hand, the synthetic glucocorticoid forbimenol and the mineralocorticoid aldosterone are agonist on hGR but antagonist on zfGR. The other steroids tested, androgens and progestins, are all antagonists of both GRs with equal or lower potency on zfGR than on hGR. Surprisingly, the lower efficacy and potency on zfGR of aldosterone, forbimenol and the dissociated glucocorticoids is not related to their affinity for the receptors which would suggest that it could be related to less efficacious recruitment of coactivators by zfGR compared to hGR.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Animales , Glucocorticoides/farmacología , Pez Cebra , Aldosterona , Esteroides , Preparaciones Farmacéuticas
10.
Toxicol In Vitro ; 88: 105554, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36641061

RESUMEN

We report an interlaboratory evaluation of a recently developed androgen receptor (AR) transactivation assay using the UALH-hAR reporter cell line that stably expresses the luciferase gene under the transcriptional control of androgen receptor elements (AREs) with no glucocorticoid receptor (GR) crosstalk. Herein, a two-step prevalidation study involving three laboratories was conducted to assess performance criteria of the method such as transferability as well as robustness, sensitivity, and specificity. The first step consisted in the validation of the transfer of the cell line to participant laboratories through the testing of three reference chemicals: the AR agonist dihydrotestosterone, the AR antagonist hydroxyflutamide and the glucocorticoid dexamethasone. Secondly, a blinded study was conducted by screening a selection of ten chemicals, including four AR agonists, five AR antagonists, and one non-active chemical. All test compounds yielded the same activity profiles in all laboratories. The logEC50 (agonist assay) or logIC50 (antagonist assay) were in the same range, with intra-laboratory coefficients of variation (CVs) of 0.1-3.4% and interlaboratory CVs of 1-4%, indicating very good within- and between-laboratory reproducibility. Our results were consistent with literature and regulatory data (OECD TG458). Overall, this interlaboratory study demonstrated that the UALH-hAR assay is transferable, produces reliable, accurate and specific (anti)androgenic activity of chemicals, and can be considered for further regulatory validation.


Asunto(s)
Antagonistas de Andrógenos , Antagonistas de Receptores Androgénicos , Activación Transcripcional , Humanos , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos , Línea Celular , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Reproducibilidad de los Resultados , Evaluación Preclínica de Medicamentos
11.
Cell Rep ; 42(7): 112661, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37347665

RESUMEN

Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.


Asunto(s)
Metamorfosis Biológica , Hormonas Tiroideas , Animales , Hormonas Tiroideas/metabolismo , Metamorfosis Biológica/fisiología , Larva/metabolismo
12.
Nat Commun ; 13(1): 7010, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385050

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Péptidos y Proteínas de Señalización Intracelular , Receptores de Hidrocarburo de Aril , Humanos , Microscopía por Crioelectrón , Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo
13.
Front Endocrinol (Lausanne) ; 12: 665521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084152

RESUMEN

The nuclear receptor pregnane X receptor (PXR) is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism in mammals. Many studies suggest that PXR may play a similar role in fish. The interaction of human PXR (hPXR) with a variety of structurally diverse endogenous and exogenous chemicals is well described. In contrast, little is known about the zebrafish PXR (zfPXR). In order to compare the effects of these chemicals on the PXR of these two species, we established reporter cell lines expressing either hPXR or zfPXR. Using these cellular models, we tested the hPXR and zfPXR activity of various steroids and pesticides. We provide evidence that steroids were generally stronger activators of zfPXR while pesticides were more potent on hPXR. In addition, some chemicals (econazole nitrate, mifepristone, cypermethrin) showed an antagonist effect on zfPXR, whereas no antagonist chemical has been identified for hPXR. These results confirm significant differences in the ability of chemicals to modulate zfPXR in comparison to hPXR and point out that zfPXR assays should be used instead of hPXR assays for evaluating the potential risks of chemicals on aquatic species.


Asunto(s)
Bioensayo/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Plaguicidas/farmacología , Receptor X de Pregnano/metabolismo , Esteroides/farmacología , Animales , Humanos , Técnicas In Vitro , Receptor X de Pregnano/genética , Pez Cebra
14.
Cancers (Basel) ; 13(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34298852

RESUMEN

Resistance to castration is a crucial issue in the treatment of metastatic prostate cancer. Kinase inhibitors (KIs) have been tested as potential alternatives, but none of them are approved yet. KIs are subject of extensive metabolism at both the hepatic and the tumor level. Here, we studied the role of PXR (Pregnane X Receptor), a master regulator of metabolism, in the resistance to KIs in a prostate cancer setting. We confirmed that PXR is expressed in prostate tumors and is more frequently detected in advanced forms of the disease. We showed that stable expression of PXR in 22Rv1 prostate cancer cells conferred a resistance to dasatinib and a higher sensitivity to erlotinib, dabrafenib, and afatinib. Higher sensitivity to afatinib was due to a ~ 2-fold increase in its intracellular accumulation and involved the SLC16A1 transporter as its pharmacological inhibition by BAY-8002 suppressed sensitization of 22Rv1 cells to afatinib and was accompanied with reduced intracellular concentration of the drug. We found that PXR could bind to the SLC16A1 promoter and induced its transcription in the presence of PXR agonists. Together, our results suggest that PXR could be a biomarker of response to kinase inhibitors in castration-resistant prostate cancers.

15.
Cancers (Basel) ; 13(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34503257

RESUMEN

Microsatellite instability (MSI) is related to the alteration of mismatch repair (MMR) genes and plays a key role in colorectal cancer (CRC) pathogenesis. We previously reported that the transcription factor Nuclear Receptor Interacting Protein 1 (NRIP1) is involved in sporadic intestinal tumorigenesis. The aim of this study was to decipher its role in MSI CRC. By using different mouse models and engineered cell lines, we demonstrated that NRIP1 increased MSH2 and MSH6 MMR gene transcription and mRNA/protein levels. In human CRC cells, NRIP1 expression was associated with decreased MSI and the hypermutator phenotype, and with resistance to chemotherapy drugs. Using a cohort of 194 CRC patients, we detected in 22% of the cases a MSI-induced frameshift mutation in the NRIP1 coding sequence. This genetic alteration generates a truncated protein with a dominant negative activity that increased human CRC cell proliferation and impaired the regulation of MSH2 and MSH6 gene expression. Moreover, the NRIP1 mutant correlated with a decreased overall survival of patients with advanced CRC, especially when MLH1-deficient. By decreasing the expression of MSH2 and MSH6 gene expression, the NRIP1 variant may amplify MLH1-dependent CRC progression and behave as a new prognostic marker of advanced MSI CRC.

16.
Front Pharmacol ; 11: 1122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792956

RESUMEN

To characterize human nuclear receptor (NR) specificity of synthetic pharmaceutical chemicals we established stable cell lines expressing the ligand binding domains (LBDs) of human FXR, LXRα, LXRß, CAR, and RORγ fused to the yeast GAL4 DNA binding domain (DBD). As we have already done for human PXR, a two-step transfection procedure was used. HeLa cells stably expressing a Gal4 responsive gene (HG5LN cell line) were transfected by Gal4-NRs expressing plasmids. At first, using these cell lines as well as the HG5LN PXR cells, we demonstrated that the basal activities varied from weak (FXR and LXRs), intermediate (PXR), to strong (CAR and RORγ), reflecting the recruitment of HeLa co-regulators in absence of ligand. Secondly, we finely characterized the activities of commercially available FXR, LXRα, LXRß, CAR, RORγ, and PXR agonists/antagonists GW4064, feraxamine, DY268, T0901317, GW3965, WAY252623, SR9238, SR9243, GSK2033, CITCO, CINPA1, PK11195, S07662, SR1078, SR0987, SR1001, SR2211, XY018, clotrimazole, dabrafenib, SR12813, and SPA70, respectively. Among these compounds we revealed both, receptor specific agonists/antagonists, as well as less selective ligands, activating or inhibiting several nuclear receptors. FXR ligands manifested high receptor selectivity. Vice versa, LXR ligands behaved in non-selective manner, all activating at least PXR. CAR was selectively influenced by their ligands, while it also responded to several LXR ligands. Finally, although PXR was quite selectively activated or antagonized by its own ligands, it responded to several NRs ligands as well. Thus, using these reporter cell lines enabled us to precisely characterize the selectivity of pharmaceutical ligands for different nuclear receptors.

17.
Water Res ; 185: 116247, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758789

RESUMEN

In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Bioensayo , Ecosistema , Disruptores Endocrinos/análisis , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
Cells ; 9(6)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560058

RESUMEN

Prostate cancer is the most commonly diagnosed malignancy in men. Its growth mainly relies on the activity of the androgen receptor (AR), justifying the use of androgen deprivation therapy as a gold standard treatment for the metastatic disease. Inhibition of the androgen axis using second generation antagonists has improved patients' survival, but is systematically confronted to resistance mechanisms, leading to a median survival that does not exceed 5 years. Counteracting this resistance has been the object of a large number of investigations, with a particular emphasis towards the identification of new AR inhibitors, whether they antagonize the receptor by a competitive or a non-competitive binding. To this end, many high content screens have been performed, to identify new non-steroidal AR antagonists, using a variety of approaches, but reported somewhat controversial results, depending on the approach and on the cell model that was used for screening. In our study, we used the U2OS osteosarcoma cells stably transfected with AR or ARv7 and a luciferase reporter as a previously validated model to screen the Prestwick Phytochemical library. The results of our screen identified ellipticine, harmol, and harmine hydrochloride as confirmed hits. Surprisingly, we could demonstrate that harmol hydrochloride, previously identified as a non-competitive inhibitor of AR or a weak inhibitor of androgen signaling, was actually a competitive antagonist of AR, which inhibits the growth of VCaP prostate cancer line, at concentrations for which it did not affect the growth of the AR negative DU145 and PC3 cells. Interestingly, we also report for the first time that harmol hydrochloride was selective for AR, as it could not alter the activity of other nuclear receptors, such as the glucocorticoid receptor (GR), the progesterone receptor (PR), or the mineralocorticoid receptor (MR). Additionally, we demonstrate that, conversely to enzalutamide, harmol hydrochloride did not show any agonistic activity towards the pregnane X receptor (PXR), a master regulator of drug metabolism. Together, our results shed light on the importance of the cellular context for the screening of new AR antagonists. They further indicate that some of the potential hits that were previously identified may have been overlooked.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Proliferación Celular/efectos de los fármacos , Harmina , Humanos , Masculino , Neoplasias de la Próstata/patología
19.
Cells ; 9(7)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650447

RESUMEN

The human pregnane X receptor (hPXR) is activated by a large set of endogenous and exogenous compounds and plays a critical role in the control of detoxifying enzymes and transporters regulating liver and gastrointestinal drug metabolism and clearance. hPXR is also involved in both the development of multidrug resistance and enhanced cancer cells aggressiveness. Moreover, its unintentional activation by pharmaceutical drugs can mediate drug-drug interactions and cause severe adverse events. In that context, the potential of the anticancer BRAF inhibitor dabrafenib suspected to activate hPXR and the human constitutive androstane receptor (hCAR) has not been thoroughly investigated yet. Using different reporter cellular assays, we demonstrate that dabrafenib can activate hPXR as efficiently as its reference agonist SR12813, whereas it does not activate mouse or zebrafish PXR nor hCAR. We also showed that dabrafenib binds to recombinant hPXR, induces the expression of hPXR responsive genes in colon LS174T-hPXR cancer cells and human hepatocytes and finally increases the proliferation in LS174T-hPXR cells. Our study reveals that by using a panel of different cellular techniques it is possible to improve the assessment of hPXR agonist activity for new developed drugs.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Oximas/farmacología , Receptor X de Pregnano/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Unión Proteica/efectos de los fármacos
20.
Toxicology ; 420: 39-45, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30951782

RESUMEN

Bisphenol-A (BPA) is one of the most abundant chemicals produced worldwide. Exposure to BPA has been associated with various physiological dysregulations, involving reproduction, development, metabolism, as well as genesis and progression of hormone-dependent cancers. It has been well published that BPA along with its analogs bind and activate estrogen receptors (ER) α and ß, estrogen related receptor (ERR) γ and pregnan X receptor (PXR). BPA has been also characterized as an inhibitor of the androgen (AR) and progesterone (PR) receptor. Thus, the need for safer alternatives to BPA among bisphenols is rising. In this regard, we used reporter cell lines to analyze the effects of 24 bisphenols on the selected nuclear receptors (NRs), known and potential targets of BPA. We showed that bisphenols differently modulated the activities of NRs. ERs, ERRγ and PXR were generally activated by bisphenols, whereas many compounds of this family acted as AR, PR, GR and MR antagonists. On the other hand, some bisphenols such as BPA, BPC and BPE modulated the activity of several NRs, but others lacked the activity of other NRs. Altogether, these data provide the guidelines for development of safer BPA substitutes with reduced hormonal activity.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Genes Reporteros , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA