RESUMEN
Dark matter with Planck-scale mass (≃10^{19} GeV/c^{2}) arises in well-motivated theories and could be produced by several cosmological mechanisms. A search for multiscatter signals from supermassive dark matter was performed with a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based detector at SNOLAB. No candidate signals were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between 8.3×10^{6} and 1.2×10^{19} GeV/c^{2}, and ^{40}Ar-scattering cross sections between 1.0×10^{-23} and 2.4×10^{-18} cm^{2}. These results are interpreted as constraints on composite dark matter models with two different nucleon-to-nuclear cross section scalings.
RESUMEN
This Letter reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 ton day) of data taken during the initial filling phase demonstrates the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage <1.2×10^{-7} (90% C.L.) between 15 and 31 keV_{ee}. No candidate signal events are observed, which results in the leading limit on weakly interacting massive particle (WIMP)-nucleon spin-independent cross section on argon, <1.2×10^{-44} cm^{2} for a 100 GeV/c^{2} WIMP mass (90% C.L.).
RESUMEN
The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from 39 Ar beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.
RESUMEN
Mediators released from injured human skin that initiate the inflammatory response have not been adequately identified. Organ culture of full-thickness skin explants enables us to do so, because injury to the skin can be made in vitro, eliminating the rapid leakage of serum and infiltration of leukocytes that occur in vivo. In our studies, the military vesicant sulfur mustard (SM) (10 microliters of a 0.01 to 1.0% dilution) was topically applied to injure the epidermis of the explant. Then, the explants were cultured in small Petri dishes, usually for 18 h at 36 degrees C, and the organ-culture fluids were assayed for various inflammatory mediators. We found that the culture fluids from SM-exposed and control explants contained similar amounts of angiotensin-converting enzyme, trypsin-like and chymotrypsin-like proteases, acid phosphatase, beta-glucuronidase, beta-galactosidase, lysozyme, deoxyribonuclease, ribonuclease, interleukin 1, and lactic dehydrogenase. However, the culture fluids from SM-exposed explants contained increased amounts of histamine and plasminogen-activating activity, and often prostaglandin E2, when compared to culture fluids from control explants. After 3 to 4 d in culture, full-thickness human skin explants, when exposed to 0.2% SM (but not when exposed to 1.0% SM), sometimes showed separation of the epidermis and increased collagenase activity (i.e., hydroxyproline release). Thus, histamine (from local mast cells), and prostaglandin E2 and plasminogen-activating activity (probably from both mast cells and epidermal cells) are apparently involved in early mediation of the inflammatory response.
Asunto(s)
Inflamación/metabolismo , Piel/metabolismo , Administración Cutánea , Dinoprostona/metabolismo , Liberación de Histamina/efectos de los fármacos , Humanos , Hidrolasas/metabolismo , Hidroxiprolina/metabolismo , Inflamación/inducido químicamente , Interleucina-1/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lisosomas/enzimología , Mastocitos/metabolismo , Gas Mostaza/administración & dosificación , Técnicas de Cultivo de Órganos , Proteínas/metabolismo , Piel/citología , Piel/efectos de los fármacosRESUMEN
The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.
RESUMEN
Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).
RESUMEN
Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.
RESUMEN
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.
RESUMEN
The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.
RESUMEN
Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to "invisible" modes, such as n-->3nu. The analysis was based on a search for gamma rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from 16O. A limit of tau(inv)>2 x 10(29) yr is obtained at 90% confidence for either neutron- or proton-decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton-decay modes and 400 times more stringent than similar neutron modes.