RESUMEN
In a randomized crossover study involving 89 patients with acute myeloid leukaemia ineligible for intensive chemotherapy, Geissler et al. compared intravenous decitabine and oral decitabine-cedazuridine. The pharmacokinetics and pharmacodynamics of the two formulations were similar. The clinical efficacy of oral decitabine-cedazuridine was consistent with historical data of intravenous decitabine. Commentary on: Geissler et al. Oral decitabine/cedazuridine versus intravenous decitabine for acute myeloid leukaemia: A randomised, crossover, registration, pharmacokinetics study. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19741.
RESUMEN
Clonal evolution (CE) is a driving force behind the development and progression of acute myeloid leukemia (AML). Advances in molecular and cytogenetic assays have improved the depth and breadth of detection of CE in AML, which is defined here as a detected change in cytogenetic or molecular profile at relapsed or refractory (RR) disease. In this study, we demonstrate the clinical impact of CE in a cohort of patients with RR AML treated between 2013 and 2023. We discovered CE is significantly more frequent in relapsed disease (58.2%, [46.6%, 69.2%]) than in refractory disease (21.1%, [14.4%, 29.2%], p < 0.001). CE negatively impacts prognosis when detected by conventional karyotyping in refractory disease (4.2 vs. 13.9 months, p < 0.011). In contrast with prior literature, CE had no impact on overall survival if detected in relapsed disease. Surprisingly, those who achieved negative measurable residual disease (MRD) were no more likely to eliminate their original clone than those who did not (p = 1). We found several cytogenetic and molecular signatures which may predispose to CE: aberrations of chromosome 17, trisomy 8, TP53, KRAS, and FLT3-TKD. Finally, physicians were less likely to retreat those with CE with IC after receiving IC as first-line therapy (35.0% vs. 70.9%, p = 0.004). This study illustrates the role of CE in chemotherapy-resistant AML; we identify unique cytogenetic and molecular signatures that define a subset of patients associated with a dismal prognosis. As next-generation sequencing panels expand and new methods to characterize cytogenetic abnormalities emerge, our findings establish a basis for future studies investigating the prognostic and therapeutic impact of CE.
RESUMEN
Ionising radiation impacts many organ systems, each of which comprises a level of immunity to infectious disease. Bone marrow toxicity after radiation results in a predisposition to leukopenia and subsequent susceptibility to bacterial, viral, and fungal infections. Radiation-induced damage to mucosal, integumentary, and solid organ structures disrupts additional lines of innate defense. Over the past three decades, much progress has been made in effective antimicrobial prophylaxis, resulting in decreased infectious complications and improved survival. Vaccination schedules following myeloablative radiation have become highly regimented and treatment of overt infectious complications is largely standardised. In this article, we discuss consequences, prevention, and management of infections following exposure to ionising radiation.
Asunto(s)
Radiación IonizanteRESUMEN
Relapsed or refractory acute myeloid leukemia (AML) is associated with poor outcomes and resistance to therapy. The addition of venetoclax, a BCL-2 antagonist, to lower-intensity therapies results in improved survival in the first-line setting compared to monotherapy with a hypomethylating agent or low-dose cytarabine. Despite this, much remains unknown about the performance of venetoclax with a hypomethylating agent following the first-line setting. Additionally, while the ELN 2022 guidelines appear to improve the prognostication of AML, clarification is needed to determine how the revision applies to lower-intensity strategies. To investigate this, we retrospectively analyzed the performance of venetoclax with decitabine or azacitidine in relapsed or refractory AML under the ELN 2022 guidelines. We demonstrated that the ELN 2022 revision is not optimized for lower-intensity venetoclax-based strategies. To refine the prognostication schema, we showed significantly improved response and survival benefits for patients with mutated NPM1 and IDH. Relatively, patients with mutated NRAS, KRAS, and FLT3-ITD were associated with inferior response and survival. Furthermore, there is an unmet clinical need for tools to improve the selection of lower-intensity therapy candidates with borderline functional status. Using an incremental survival computation method, we discovered that a CCI score threshold of 5 distinguishes patients at an elevated risk of death. Together, these novel findings highlight areas of refinement to improve survival in relapsed or refractory AML.
Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Azacitidina/uso terapéutico , Decitabina/efectos adversos , Estudios Retrospectivos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
The characterization of the molecular landscape and the advent of targeted therapies have defined a new era in the prognostication and treatment of acute myeloid leukemia. Recent revisions in the European LeukemiaNet 2022 guidelines have refined the molecular, cytogenetic, and treatment-related boundaries between myelodysplastic neoplasms (MDS) and AML. This review details the molecular mechanisms and cellular pathways of myeloid maturation aberrancies contributing to dysplasia and leukemogenesis, focusing on recent molecular categories introduced in ELN 2022. We provide insights into novel and rational therapeutic combination strategies that exploit mechanisms of leukemogenesis, highlighting the underpinnings of splicing factors, the cohesin complex, and chromatin remodeling. Areas of interest for future research are summarized, and we emphasize approaches designed to advance existing treatment strategies.
RESUMEN
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Médula Ósea , Factores de Transcripción , Epigénesis Genética , Transducción de Señal , Microambiente TumoralRESUMEN
Treatment paradigms for acute myeloid leukemia (AML) have evolved at a rapid pace in recent years. The combination of venetoclax with a hypomethylating agent prolonged survival in clinical trials when compared to hypomethylating agent monotherapy. However, little is known about the performance of venetoclax-based regimens outside of clinical trials, given conflicting safety and efficacy data. Even less is known about the impact of the hypomethylating agent backbone. In this study, we demonstrate that decitabine-venetoclax is associated with a significantly higher rate of grade three or higher thrombocytopenia, but lower rates of lymphocytopenia compared to azacitidine-venetoclax. There was no difference in response or survival across ELN 2017 cytogenetic risk categories in the overall cohort. Significantly more patients succumb to relapsed or refractory disease than death from any other cause. We demonstrated that a Charlson comorbidity index score threshold of seven identifies exceptionally high-risk patients, providing evidence for clinical use to reduce the risk of early treatment-related mortality. Lastly, we provide evidence that measurable residual disease negativity and an IDH mutation predict a significant survival benefit outside clinical trials. Taken together, these data illuminate the real-world performance of venetoclax and decitabine or azacitidine in the treatment of AML.
RESUMEN
The azanucleotide decitabine is used in the treatment of acute myeloid leukemia (AML). Studies have shown conflicting results with 10-day regimens used in previously untreated AML patients. Additionally, there is little data on 10-day decitabine regimens in the relapsed setting. This study investigated outcomes of 108 adult patients with AML in the upfront and relapsed setting treated with a 10-day decitabine regimen. In the upfront group, the overall response rate (ORR, CR + CRi) was 36.1% and the median overall survival (OS) was 6.6 months, while the relapsed/refractory group had an ORR of 25% with an OS of 4.8 months. When analyzed with respect to cytogenetics, the upfront group featured an ORR of 28.1% with an OS of 9.4 months in the intermediate cytogenetic cohort compared to a 40.5% ORR and an OS of 5.4 months in the unfavorable cytogenetic cohort. An analysis of the relapsed/refractory group demonstrated an ORR of 26.3% with an OS of 7.9 months for intermediate cytogenetics versus 25.0% with an OS of 1.8 months in the unfavorable cohort. While these response rates are similar to previously published data, the median OS appears shorter.