Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 14: 1264093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022675

RESUMEN

Background: Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods: Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results: We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion: Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Neoplasias de Cabeza y Cuello/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
2.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139440

RESUMEN

(1) Background: The first line of treatment for recurrent/metastatic Head and Neck Squamous Cell Carcinoma (HNSCC) has recently evolved with the approval of immunotherapies that target the anti-PD-1 immune checkpoint. However, only about 20% of the patients display a long-lasting objective tumor response. The modulation of cancer cell immunogenicity via a treatment-induced immunogenic cell death is proposed to potentially be able to improve the rate of patients who respond to immune checkpoint blocking immunotherapies. (2) Methods: Using human HNSCC cell line models and a mouse oral cancer syngeneic model, we have analyzed the ability of the EXTREME regimen (combination therapy using the anti-EGFR cetuximab antibody and platinum-based chemotherapy) to modify the immunogenicity of HNSCC cells. (3) Results: We showed that the combination of cetuximab and cisplatin reduces cell growth through both cell cycle inhibition and the induction of apoptotic cell death independently of p53. In addition, different components of the EXTREME regimen were found to induce, to a variable extent, and in a cell-dependent manner, the emission of mediators of immunogenic cell death, including calreticulin, HMGB1, and type I Interferon-responsive chemokines. Interestingly, cetuximab alone or combined with the IC50 dose of cisplatin can induce an antitumor immune response in vivo, but not when combined with a high dose of cisplatin. (4) Conclusions: Our observations suggest that the EXTREME protocol or cetuximab alone are capable, under conditions of moderate apoptosis induction, of eliciting the mobilization of the immune system and an anti-tumor immune response in HNSCC.


Asunto(s)
Cetuximab , Neoplasias de Cabeza y Cuello , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Calreticulina , Cetuximab/uso terapéutico , Cisplatino/uso terapéutico , Proteína HMGB1 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Humanos , Inmunidad , Interferón Tipo I , Ratones , Recurrencia Local de Neoplasia/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Proteína p53 Supresora de Tumor
3.
Cancers (Basel) ; 11(10)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627299

RESUMEN

Advanced colorectal cancer has a poor prognosis because of metastasis formation and resistance to combined therapies. Downstream of PI3K/Akt and Ras/MAPK pathways, the mTOR kinase plays a decisive role in treatment failure. We previously established that irinotecan has antiangiogenic properties and it is known that new mammalian target of rapamycin (mTOR) catalytic AZD inhibitors, unlike rapamycin, target both mTORC1 and mTORC2. Thus, we hypothesized that the complete inhibition of the PI3K/AKT/mTOR/HIF-1α axis with mTOR catalytic inhibitors and low doses of irinotecan may have antitumor effects. We showed that the AZD8055 and AZD2014 inhibitors were much more potent than rapamycin to reduce cell viability of four colon cell lines. On the other hand, whereas AZD2014 alone inhibits migration by 40%, the drug combination led to 70% inhibition. Similarly, neither irinotecan nor AZD2014 significantly reduced cell invasion, whereas a combination of the two inhibits invasion by 70%. In vivo, irinotecan and AZD2014 combination drastically reduced ectopic patient-derived colon tumor growth and this combination was more potent than Folfox or Folfiri. Finally, the combination totally inhibited liver and lung metastases developed from orthotopic implantation of SW480 cells. Thus, the use of mTOR catalytic inhibitors, in association with other chemotherapeutic agents like irinotecan at low doses, is potentially a hope for colon cancer treatment.

4.
Cancers (Basel) ; 11(6)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181806

RESUMEN

The management of locally advanced head and neck squamous cell carcinoma (HNSCC) with Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor (EGFR), achieves only moderate response rates, and clinical trials that evaluated EGFR-blockade with tyrosine kinase inhibitors (TKI) yielded disappointing results. Inter-tumor heterogeneity may hinder the therapeutic efficiency of anti-EGFR treatments. HNSCC heterogeneity was addressed in several studies, which all converged towards the definition of molecular subgroups. They include the basal subgroup, defined by the deregulated expression of factors involved in the EGFR signaling pathway, including the epiregulin EGFR ligand encoded by the EREG gene. These observations indicate that basal tumors could be more sensitive to anti-EGFR treatments. To test this hypothesis, we performed a screen of a representative collection of basal versus non-basal HNSCC cell lines for their sensitivity to several anti-EGFR drugs (Cetuximab, Afatinib, and Gefitinib), tested as monotherapy or in combination with drugs that target closely-linked pathways [Mitogen-activated protein kinase kinase/ extracellular signal-regulated kinases (MEK), mammalian Target of Rapamycine (mTOR) or Human Epidermal growth factor Receptor 2 (HER2)]. Basal-like cell lines were found to be more sensitive to EGFR blockade alone or in combination with treatments that target MEK, mTOR, or HER2. Strikingly, the basal-like status was found to be a better predictor of cell response to EGFR blockade than clinically relevant mutations [e.g., cyclin-dependent kinase Inhibitor 2A (CDKN2A)]. Interestingly, we show that EGFR blockade inhibits EREG expression, and that EREG knock-down decreases basal cell clonogenic survival, suggesting that EREG expression could be a predictive functional marker of sensitivity to EGFR blockade in basal-like HNSCC.

5.
Oncotarget ; 8(24): 38351-38366, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28418886

RESUMEN

CXCL12 has been shown to be involved in colon cancer metastasis, but its expression level and molecular mechanisms regulating its expression remain controversial. We thus evaluated CXCL12 expression in a large cohort of colon adenomas and carcinomas, investigated for an epigenetic mechanism controlling its expression and evaluated the impact of CXCL12 levels on cell migration and tumor growth. CXCL12 expression was measured in human colon adenomas and carcinomas with transcriptome array and RT-qPCR. The promoter methylation was analyzed with whole-genome DNA methylation chips and protein expression by immunohistochemistry. We confirm a reduced expression of CXCL12 in 75% of MSS carcinomas and show that the decrease is an early event as already present in adenomas. The methylome analysis shows that the CXCL12 promoter is methylated in only 30% of microsatellite-stable tumors. In vitro, treatments with HDAC inhibitors, butyrate and valproate restored CXCL12 expression in three colon cell lines, increased acetylation of histone H3 within the CXCL12 promoter and inhibited cell migration. In vivo, valproate diminished (65%) the number of intestinal tumors in APC mutant mice, slowed down xenograft tumor growth concomitant to restored CXCL12 expression. Finally we identified loss of PCAF expression in tumor samples and showed that forced expression of PCAF in colon cancer cell lines restored CXCL12 expression. Thus, reduced PCAF expression may participate to CXCL12 promoter hypoacetylation and its subsequent loss of expression. Our study is of potential clinical interest because agents that promote or maintain histone acetylation through HDAC inhibition and/or HAT stimulation, may help to lower colon adenoma/carcinoma incidence, especially in high-risk families, or could be included in therapeutic protocols to treat advanced colon cancer.


Asunto(s)
Quimiocina CXCL12/biosíntesis , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Acetilación , Adenocarcinoma/patología , Adenoma/patología , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quimiocina CXCL12/genética , Neoplasias del Colon/genética , Metilación de ADN , Regulación hacia Abajo , Femenino , Xenoinjertos , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA