Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298525

RESUMEN

Eating disorders are multifactorial disorders that involve maladaptive feeding behaviors. Binge eating disorder (BED), the most prevalent of these in both men and women, is characterized by recurrent episodes of eating large amounts of food in a short period of time, with a subjective loss of control over eating behavior. BED modulates the brain reward circuit in humans and animal models, which involves the dynamic regulation of the dopamine circuitry. The endocannabinoid system plays a major role in the regulation of food intake, both centrally and in the periphery. Pharmacological approaches together with research using genetically modified animals have strongly highlighted a predominant role of the endocannabinoid system in feeding behaviors, with the specific modulation of addictive-like eating behaviors. The purpose of the present review is to summarize our current knowledge on the neurobiology of BED in humans and animal models and to highlight the specific role of the endocannabinoid system in the development and maintenance of BED. A proposed model for a better understanding of the underlying mechanisms involving the endocannabinoid system is discussed. Future research will be necessary to develop more specific treatment strategies to reduce BED symptoms.


Asunto(s)
Trastorno por Atracón , Trastornos de Alimentación y de la Ingestión de Alimentos , Masculino , Animales , Humanos , Femenino , Trastorno por Atracón/tratamiento farmacológico , Endocannabinoides , Conducta Alimentaria , Hiperfagia , Ingestión de Alimentos
2.
Eur J Neurosci ; 53(10): 3341-3349, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811699

RESUMEN

Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.


Asunto(s)
Cocaína , Animales , Hipocampo/metabolismo , Ratas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Recompensa , Autoadministración
3.
Eur J Nutr ; 60(8): 4621-4633, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34165614

RESUMEN

OBJECTIVES: Increased availability of high-calorie palatable food in most countries has resulted in overconsumption of these foods, suggesting that excessive eating is driven by pleasure, rather than metabolic need. The behavior contributes to the rise in eating disorders, obesity, and associated pathologies like diabetes, cardiac disease, and cancers. The mesocorticolimbic dopamine and homeostatic circuits are interconnected and play a central role in palatable food intake. The endocannabinoid system is expressed in these circuits and represents a potent regulator of feeding, but the impact of an obesogenic diet on its expression is not fully known. METHODS: Food intake and body weight were recorded in male Wistar rats over a 6-week free-choice regimen of high fat and sugar; transcriptional regulations of the endocannabinoid system were examined post-mortem in brain reward regions (prefrontal cortex, nucleus accumbens, ventral tegmental area, and arcuate nucleus). K-means cluster analysis was used to classify animals based on individual sensitivity to obesity and palatable food intake. Endocannabinoid levels were quantified in the prefrontal cortex and nucleus accumbens. Gene expression in dopamine and homeostatic systems, including ghrelin and leptin receptors, and classical homeostatic peptides, were also investigated. RESULTS: The free-choice high-fat -and sugar diet induced hyperphagia and obesity in rats. Cluster analysis revealed that the propensity to develop obesity and excessive palatable food intake was differently associated with dopamine and endocannabinoid system gene expression in reward and homeostatic brain regions. CB2 receptor mRNA was increased in the nucleus accumbens of high sugar consumers, whereas CB1 receptor mRNA was decreased in obesity prone rats. CONCLUSIONS: Transcriptional data are consistent with observations of altered dopamine function in rodents that have access to an obesogenic diet and point to cannabinoid receptors as GPCR targets involved in neuroplasticity mechanisms associated with maladaptive intake of palatable food.


Asunto(s)
Dieta , Endocannabinoides , Animales , Encéfalo , Análisis por Conglomerados , Ingestión de Alimentos , Masculino , Obesidad/etiología , Ratas , Ratas Wistar , Recompensa
4.
Appetite ; 164: 105258, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864862

RESUMEN

Binge eating, the defining feature of binge eating disorder (BED), is associated with a number of adverse health outcomes as well as a reduced quality of life. Animals, like humans, selectively binge on highly palatable food suggesting that the behaviour is driven by hedonic, rather than metabolic, signals. Given the links to both reward processing and food intake, this study examined the contribution of the endocannabinoid system (ECS) to binge-like eating in rats. Separate groups were given intermittent (12 h) or continuous (24 h) access to 10% sucrose and food over 28 days, with only the 12 h access group displaying excessive sucrose intake within a discrete period of time (i.e., binge eating). Importantly, this group also exhibited alterations in ECS transcripts and endocannabinoid levels in brain reward regions, including an increase in cannabinoid receptor 1 (CB1R) mRNA in the nucleus accumbens as well as changes in endocannabinoid levels in the prefrontal cortex and hippocampus. We then tested whether different doses (1 and 3 mg/kg) of a CB1R antagonist, Rimonabant, modify binge-like intake or the development of a conditioned place preference (CPP) to sucrose. CB1R blockade reduced binge-like intake of sucrose and blocked a sucrose CPP, but only in rats that had undergone 28 days of sucrose consumption. These findings indicate that sucrose bingeing alters the ECS in reward-related areas, modifications that exacerbate the effect of CB1R blockade on sucrose reward. Overall, our results broaden the understanding of neural alterations associated with bingeing eating and demonstrate an important role for CB1R mechanisms in reward processing. In addition, these findings have implications for understanding substance abuse, which is also characterized by excessive and maladaptive intake, pointing towards addictive-like properties of palatable food.


Asunto(s)
Trastorno por Atracón , Animales , Ingestión de Alimentos , Endocannabinoides , Conducta Alimentaria , Calidad de Vida , Ratas , Sacarosa
5.
Proc Natl Acad Sci U S A ; 108(39): 16446-50, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930931

RESUMEN

Morphine is a highly potent analgesic with high addictive potential in specific contexts. Although dopamine neurons of the ventral tegmental area (VTA) are widely believed to play an essential role in the development of drug addiction, neuronal circuits underlying morphine action on dopamine neurons have not been fully elucidated. Here we combined in vivo electrophysiology, tract-tracing experiments, and targeted neuronal inactivation to dissect a neural circuit for acute morphine action on dopamine neurons in rats. We found that in vivo, morphine targets the GABAergic tail of the VTA, also called the rostromedial tegmental nucleus, to increase the firing of dopamine neurons through the activation of VTA µ opioid receptors expressed on tail of the VTA/rostromedial tegmental nucleus efferents. Our data also reveal that in the absence of VTA glutamatergic tone, there is no morphine-induced activation of dopamine neurons. These results define the anatomical organization and functional role of a neural circuit for acute morphine action on dopamine neurons.


Asunto(s)
Dopamina/metabolismo , Morfina/farmacología , Neuronas/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38570645

RESUMEN

Excessive consumption of palatable foods that are rich in fats and sugars has contributed to the increasing prevalence of obesity worldwide. Similar to addictive drugs, such foods activate the brain's reward circuit, involving mesolimbic dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the prefrontal cortex. Neuroadaptations occurring in this circuit are hypothesized to contribute to uncontrolled consumption of such foods, a common feature of most of eating disorders and obesity. The rostromedial tegmental nucleus (RMTg), also named tail of the VTA (tVTA), is an inhibitory structure projecting to the VTA and the lateral hypothalamus (LH), two key brain regions in food intake regulation. Prior research has demonstrated that the RMTg responds to addictive drugs and influences their impact on mesolimbic activity and reward-related behaviors. However, the role of the RMTg in food intake regulation remains largely unexplored. The present study aimed to investigate the role of the RMTg and its projections to the VTA and the LH in regulating food intake in rats. To do so, we examined eating patterns of rats with either bilateral excitotoxic lesions of the RMTg or specific lesions of RMTg-VTA and RMTg-LH pathways. Rats were exposed to a 6-week 'free choice high-fat and high-sugar' diet, followed by a 4-week palatable food forced abstinence and a 24 h re-access period. Our results indicate that an RMTg-VTA pathway lesion increases fat consumption following 6 weeks of diet and at time of re-access. The RMTg-LH pathway lesion produces a milder effect with a decrease in global calorie intake. These findings suggest that the RMTg influences palatable food consumption and relapse through its projections to the VTA.

7.
Mol Neurobiol ; 59(3): 1896-1911, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35032317

RESUMEN

Cocaine addiction is a complex pathology inducing long-term neuroplastic changes that, in turn, contribute to maladaptive behaviors. This behavioral dysregulation is associated with transcriptional reprogramming in brain reward circuitry, although the mechanisms underlying this modulation remain poorly understood. The endogenous cannabinoid system may play a role in this process in that cannabinoid mechanisms modulate drug reward and contribute to cocaine-induced neural adaptations. In this study, we investigated whether cocaine self-administration induces long-term adaptations, including transcriptional modifications and associated epigenetic processes. We first examined endocannabinoid gene expression in reward-related brain regions of the rat following self-administered (0.33 mg/kg intravenous, FR1, 10 days) cocaine injections. Interestingly, we found increased Cnr1 expression in several structures, including prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, habenula, amygdala, lateral hypothalamus, ventral tegmental area, and rostromedial tegmental nucleus, with most pronounced effects in the hippocampus. Endocannabinoid levels, measured by mass spectrometry, were also altered in this structure. Chromatin immunoprecipitation followed by qPCR in the hippocampus revealed that two activating histone marks, H3K4Me3 and H3K27Ac, were enriched at specific endocannabinoid genes following cocaine intake. Targeting CB1 receptors using chromosome conformation capture, we highlighted spatial chromatin re-organization in the hippocampus, as well as in the nucleus accumbens, suggesting that destabilization of the chromatin may contribute to neuronal responses to cocaine. Overall, our results highlight a key role for the hippocampus in cocaine-induced plasticity and broaden the understanding of neuronal alterations associated with endocannabinoid signaling. The latter suggests that epigenetic modifications contribute to maladaptive behaviors associated with chronic drug use.


Asunto(s)
Cannabinoides , Cocaína , Animales , Cannabinoides/farmacología , Cocaína/farmacología , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratas , Receptores de Cannabinoides/metabolismo , Autoadministración
8.
Neurosci Lett ; 764: 135603, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33387661

RESUMEN

Cocaine addiction is a serious health issue in Western countries. Despite the regular increase in cocaine consumption across the population, there is no specific treatment for cocaine addiction. Critical roles for glutamate neurotransmission in the rewarding effects of psychostimulants as well as relapse have been suggested and accumulating evidence indicates that targeting mGlu group III receptors could represent a promising strategy to develop therapeutic compounds to treat addiction. In this context, the aim of our study was to examine the effect of LSP2-9166, a mGlu4/mGlu7 receptor orthosteric agonist, on the motivation for cocaine intake. We used an intravenous self-administration paradigm in male Wistar rats as a reliable model of voluntary drug intake. We first evaluated the direct impact of cocaine on Grm4 and Grm7 gene expression. Voluntary cocaine intake under a fixed ratio schedule of injections induced an increase of both mGlu4 and mGlu7 receptor transcripts in nucleus accumbens and hippocampus. We then evaluated the ability of LSP2-9166 to affect cocaine self-administration under a progressive ratio schedule of reinforcement. We found that this compound inhibits the motivation to obtain the drug, although it induced a hypolocomotor effect which could biais motivation index. Our findings demonstrate that mGlu group III receptors represent new targets for decreasing motivation to self-administer cocaine.


Asunto(s)
Aminobutiratos/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Motivación/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Administración Intravenosa , Aminobutiratos/uso terapéutico , Animales , Cocaína/administración & dosificación , Cocaína/efectos adversos , Trastornos Relacionados con Cocaína/psicología , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Refuerzo en Psicología , Autoadministración , Transmisión Sináptica/efectos de los fármacos
9.
Neuropsychopharmacology ; 39(12): 2788-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24896615

RESUMEN

Midbrain dopamine neurons are implicated in various psychiatric and neurological disorders. The GABAergic tail of the ventral tegmental area (tVTA), also named the rostromedial tegmental nucleus (RMTg), displays dense projections to the midbrain and exerts electrophysiological control over dopamine cells of the VTA. However, the influence of the tVTA on the nigrostriatal pathway, from the substantia nigra pars compacta (SNc) to the dorsal striatum, and on related functions remains to be addressed. The present study highlights the role played by the tVTA as a GABA brake for the nigrostriatal system, demonstrating a critical influence over motor functions. Using neuroanatomical approaches with tract tracing and electron microscopy, we reveal the presence of a tVTA-SNc-dorsal striatum pathway. Using in vivo electrophysiology, we prove that the tVTA is a major inhibitory control center for SNc dopamine cells. Using behavioral approaches, we demonstrate that the tVTA controls rotation behavior, motor coordination, and motor skill learning. The motor enhancements observed after ablation of the tVTA are in this regard comparable with the performance-enhancing properties of amphetamine, a drug used in doping. These findings demonstrate that the tVTA is a major GABA brake for nigral dopamine systems and nigrostriatal functions, and they raise important questions about how the tVTA is integrated within the basal ganglia circuitry. They also warrant further research on the tVTA's role in motor and dopamine-related pathological contexts such as Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Desempeño Psicomotor/fisiología , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Dextroanfetamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Microelectrodos , Microscopía Electrónica , Inhibición Neural/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Desempeño Psicomotor/efectos de los fármacos , Ratas Sprague-Dawley , Rotación , Sustancia Negra/anatomía & histología , Sustancia Negra/efectos de los fármacos , Área Tegmental Ventral/anatomía & histología , Área Tegmental Ventral/efectos de los fármacos
10.
Trends Neurosci ; 35(11): 681-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22824232

RESUMEN

The tail of the ventral tegmental area (tVTA), also named the rostromedial tegmental nucleus (RMTg), is a recently defined midbrain structure considered to exert a major inhibitory drive on dopamine systems. In view of its connectivity, tVTA is well placed to convey salient positive and negative signals to dopamine cells and participate in adaptative behavioral responses. This structure could act as a hub converging and integrating widespread multimodal signals toward dopamine systems. The tVTA participates in prediction error, motor control, and responses to aversive stimuli and drugs of abuse. In light of the crucial role of the tVTA in the opiate control of dopamine activity, a neuroanatomical update of the disinhibition model of morphine action is proposed.


Asunto(s)
Dopamina/fisiología , Área Tegmental Ventral/fisiología , Adaptación Psicológica/fisiología , Vías Aferentes/fisiología , Animales , Nivel de Alerta/fisiología , Reacción de Prevención/fisiología , Mapeo Encefálico , Neuronas Dopaminérgicas/fisiología , Vías Eferentes/fisiología , Emociones/fisiología , Neuronas GABAérgicas/fisiología , Mesencéfalo/fisiología , Modelos Neurológicos , Actividad Motora/fisiología , Trastornos Relacionados con Opioides/fisiopatología , Prosencéfalo/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Ratas , Receptores Opioides mu/fisiología , Recompensa , Área Tegmental Ventral/ultraestructura
11.
Br J Pharmacol ; 161(8): 1677-91, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21087442

RESUMEN

BACKGROUND AND PURPOSE: The tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, is a newly defined brain structure and a potential control centre for dopaminergic activity. It was identified by the induction of DeltaFosB following chronic cocaine exposure. In this work, we screened 20 drugs for their ability to induce FosB/DeltaFosB in the tVTA. EXPERIMENTAL APPROACH: Immunohistochemistry following systemic drug administration was used to study FosB/DeltaFosB induction in the tVTA of adult rats. Double-staining was used to determine whether dopamine or GABA neurones are involved in this induction. KEY RESULTS: The acute injection of the psychostimulant drugs cocaine, D-amphetamine, (+/-)-3,4-methylenedioxymethamphetamine (MDMA), methylphenidate or caffeine, induced the expression of FosB/DeltaFosB in the tVTA GABAergic cells. No induction was observed following exposure to ethanol, diazepam, γ-hydroxybutyric acid (GHB), morphine, ketamine, phencyclidine (PCP), Δ(9)-tetrahydrocannabinol (THC), sodium valproic acid or gabapentin. To evaluate the role of monoamine transporters in the psychostimulant-induced expression of FosB/DeltaFosB, we tested the antidepressant drugs reboxetine, nortriptyline, fluoxetine and venlafaxine (which target the noradrenaline and/or the 5-hydroxytryptamine transporters), the 5-hydroxytryptamine releasing agent dexfenfluramine, and the dopamine transporter inhibitor GBR12909. Only GBR12909 was able to induce FosB/DeltaFosB expression in the tVTA, showing that this induction is mediated by dopamine. CONCLUSIONS AND IMPLICATIONS: Newly described brain structures may help to increase our knowledge of brain function, pathology and targets for treatments. FosB/DeltaFosB induction in the tVTA is a common feature of drugs sharing psychostimulant properties but not of drugs sharing risk of abuse.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Psicotrópicos/farmacología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Masculino , Neuronas/metabolismo , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA