Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(30): 14295-14301, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39011647

RESUMEN

Microelectrode arrays are commonly used to study the electrophysiological behavior of cells. Recently, there has been a growing interest in fabricating three-dimensional microelectrode arrays. Here, we present a novel process for the fast fabrication of epoxy-based 3D microelectrode array platforms with the assistance of laser-patterning technology. To this end, we photopatterned 3D pillars as scaffolds using epoxy-based dry films. Electrodes and conductor traces were fabricated by laser patterning of sputtered platinum films on top of the 3D structures, followed by deposition of parylene-C for insulation. Microelectrodes at the tip of the 3D structures were exposed using a vertical laser ablation process. The final electrodes demonstrated a low impedance of ∼10 kΩ at 1 kHz in electrochemical impedance spectroscopy measurements under physiological conditions. We investigated the maximum compression force of the 3D structures, which could withstand approximately 0.6 N per pillar. The 3D microelectrode arrays were used to record extracellular signals from HL-1 cells in culture as a proof of principle. Our results show regular firing of action potentials recorded at the tip of the 3D structures, demonstrating the possibility of recording cell signals in non-planar environments.

2.
Adv Healthc Mater ; 12(17): e2202869, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36827235

RESUMEN

The use of soft and flexible bioelectronic interfaces can enhance the quality for recording cells' electrical activity by ensuring a continuous and intimate contact with the smooth, curving surfaces found in the physiological environment. This work develops soft microelectrode arrays (MEAs) made of silk fibroin (SF) films for recording interfaces that can also serve as a drug delivery system. Inkjet printing is used as a tool to deposit the substrate, conductive electrode, and insulator, as well as a drug-delivery nanocomposite film. This approach is highly versatile, as shown in the fabrication of carbon microelectrodes, sandwiched between a silk substrate and a silk insulator. The technique permits the development of thin-film devices that can be employed for in vitro extracellular recordings of HL-1 cell action potentials. The tuning of SF by applying an electrical stimulus to produce a permeable layer that can be used in on-demand drug delivery systems is also demonstrated. The multifunctional MEA developed here can pave the way for in vitro drug screening by applying time-resolved and localized chemical stimuli.


Asunto(s)
Fibroínas , Seda , Microelectrodos , Sistemas de Liberación de Medicamentos , Conductividad Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA