RESUMEN
Mixing and segregation of granular particles on the basis of size and density from vertical vibration or upward gas flow is critical to a wide range of industrial, agricultural and natural processes. Recently, combined vibration and gas flow under certain conditions has been shown to create periodically repeating structured bubbling patterns within a fluidized bed of spherical, monodisperse particles. Here, we demonstrate with experiments and simulations that structured bubbling can form in binary mixtures of particles with different size and density, but with similar minimum fluidization velocities. Structured bubbling leads to particles mixing regardless of initial particle configuration, while exciting particles with only gas flow produces smaller unstructured bubbles which act to segregate particles. Discrete particle simulations match the experimental results qualitatively and, in some regards quantitatively, while continuum particle simulations do not predict mixing in the case of structured bubbling, highlighting areas for future model improvement.
RESUMEN
The dynamics of granular materials are critical to many natural and industrial processes; granular motion is often strikingly similar to flow in conventional liquids. Food, pharmaceutical, and clean energy processes utilize bubbling fluidized beds, systems in which gas is flowed upward through granular particles, suspending the particles in a liquid-like state through which gas voids or bubbles rise. Here, we demonstrate that vibrating these systems at a resonant frequency can transform the normally chaotic motion of these bubbles into a dynamically structured configuration, creating reproducible, controlled motion of particles and gas. The resonant frequency is independent of particle properties and system size, and a simple harmonic oscillator model captures this frequency. Discrete particle simulations show that bubble structuring forms because of rapid, local transitions between solid-like and fluid-like behavior in the grains induced by vibration. Existing continuum models for gas-solid flows struggle to capture these fluid-solid transitions and thus cannot predict the bubble structuring. We propose a constitutive relationship for solids stress that predicts fluid-solid transitions and hence captures the experimental structured bubbling patterns. Similar structuring has been observed by oscillating gas flow in bubbling fluidized beds. We show that vibrating bubbling fluidized beds can produce a more ordered structure, particularly as system size is increased. The scalable structure and continuum model proposed here provide the potential to address major issues with scale-up and optimal operation, which currently limit the use of bubbling fluidized beds in existing and emerging technologies.
RESUMEN
Granular particles subject to both vertical gas flow and vertical vibration are shown experimentally to exhibit structured convection cells in a densely packed yet fluidized state without gas voids traveling through the particles. Continuum gas-granular simulations reproduce the phenomenon and demonstrate that the convection occurs due to buoyant force arising from a positive vertical gradient in bulk solid density competing with viscous force created by interparticle friction. Simulations further show that convection structures persist in a controllable manner when increasing system width.
RESUMEN
The motion and mixing of granular media are observed in several contexts in nature, often displaying striking similarities to liquids. Granular dynamics occur in geological phenomena and also enable technologies ranging from pharmaceuticals production to carbon capture. Here, we report the discovery of a family of gravitational instabilities in granular particle mixtures subject to vertical vibration and upward gas flow, including a Rayleigh-Taylor (RT)-like instability in which lighter grains rise through heavier grains in the form of "fingers" and "granular bubbles." We demonstrate that this RT-like instability arises due to a competition between upward drag force increased locally by gas channeling and downward contact forces, and thus the physical mechanism is entirely different from that found in liquids. This gas channeling mechanism also generates other gravitational instabilities: the rise of a granular bubble which leaves a trail of particles behind it and the cascading branching of a descending granular droplet. These instabilities suggest opportunities for patterning within granular mixtures.
RESUMEN
Granular materials are critical to many natural and industrial processes, yet the chaotic flow behavior makes granular dynamics difficult to understand, model, and control, causing difficulties for natural disaster mitigation as well as scale-up and optimization of industrial devices. Hydrodynamic instabilities in externally excited grains often resemble those in fluids, but have different underlying mechanisms, and these instabilities provide a pathway to understand geological flow patterns and control granular flows in industry. Granular particles subject to vibration have been shown to exhibit Faraday waves analogous to those in fluids; however, waves can only form at high vibration strengths and in shallow layers. Here, we demonstrate that combined gas flow and vibration induces granular waves without these limitations to enable structured, controllable granular flows at larger scale with lower energy consumption for potential industrial processes. Continuum simulations reveal that drag force under gas flow creates more coordinated particle motions to allow waves in taller layers as seen in liquids, bridging the gap between waves produced in conventional fluids and granular particles subject to vibration alone.
RESUMEN
Geological flows-from mudslides to volcanic eruptions-are often opaque and consist of multiple interacting phases. Scaled laboratory geological experiments using analog materials have often been limited to optical imaging of flow exteriors or ex situ measurements. Geological flows often include internal phase transitions and chemical reactions that are difficult to image externally. Thus, many physical mechanisms underlying geological flows remain unknown, hindering model development. We propose using magnetic resonance imaging (MRI) to enhance geosciences via non-invasive, in situ measurements of 3D flows. MRI is currently used to characterize the interior dynamics of multiphase flows, distinguishing between different chemical species as well as gas, liquid, and solid phases, while quantitatively measuring concentration, velocity, and diffusion fields. This perspective describes the potential of MRI techniques to image dynamics within scaled geological flow experiments and the potential of technique development for geological samples to be transferred to other disciplines utilizing MRI.
RESUMEN
Granular dynamics govern earthquakes, avalanches, and landslides and are of fundamental importance in a variety of industries ranging from energy to pharmaceuticals to agriculture. Nonetheless, our understanding of the underlying physics is poor because we lack spatially and temporally resolved experimental measurements of internal grain motion. We introduce a magnetic resonance imaging methodology that provides internal granular velocity measurements that are four orders of magnitude faster compared to previous work. The technique is based on a concerted interplay of scan acceleration and materials engineering. Real-time probing of granular dynamics is explored in single- and two-phase systems, providing fresh insight into bubble dynamics and the propagation of shock waves upon impact of an intruder. We anticipate that the methodology outlined here will enable advances in understanding the propagation of seismic activity, the jamming transition, or the rheology and dynamics of dense suspensions.
RESUMEN
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid.