Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35224989

RESUMEN

Fusarium crown rot of wheat is an economically important disease that leads to significant yield and quality losses, especially in many arid and semi-arid wheat-growing areas worldwide. In June 2020, winter wheat (Triticum aestivum L.) plants exhibiting crown rot symptoms were identified in a commercial field located in the Tokbay location (43.033719°N, 74.325623°E), Chuy Province, Kyrgyzstan. The diseased plants were stunted and had brown discoloration on internodes of the stem bases and roots. Disease incidence was about 3%. A total of 10 plants were sampled at the ripening stage from the field to identify the causal agent. Symptomatic tissues were excised, surface disinfected with 1% NaOCl, rinsed three times with distilled water, and placed on one-fifth strength potato dextrose agar (PDA) followed by incubation at 23°C in the dark for 5 days. A total of 8 Fusarium isolates were recovered from tissues and purified by the hyphal tips method onto fresh PDA and Spezieller-Nährstoffarmer agar (SNA) plates (Leslie and Summerell 2006). Sequence analysis of the translation elongation factor 1α (TEF1) and the RNA polymerase II beta subunit (RPB2) genes were performed with primers EF1 and EF2 (O'Donnell et al. 1998), and 5f2 (Reeb et al. 2004) and 7cr (Liu et al. 1999), respectively. The sequences of three isolates showed 100% identities with the corresponding sequences of the strain NRRL 66652 of Fusarium algeriense Laraba & O'Donnell (TEF1: MF120515 and RPB2: MF120504), and the sequences of a representative isolate (KyrFa01) were deposited in GenBank (TEF1: OM135603 and RPB2: OM135604). On PDA, fungal colonies were initially yellowish-white but gradually turned yellowish-brown. Ellipsoidal microconidia produced in false heads on monophialides were usually aseptate (8.30 ± 1.17 µm, n = 50) and occasionally one-septate (21.89 ± 2.01 µm, n = 50). Sporodochial macroconidia were mostly 3-4 septate measuring 43.41 ± 2.83 µm (n = 50), slightly curved and formed generally on monophialides on SNA. No chlamydospores formation was detected after 15 days on SNA or PDA. Morphological characteristics described above were consistent with the morphology of F. algeriense, as reported by Laraba et al. (2017). To confirm pathogenicity, seeds of wheat cultivar Seri 82, Fusarium crown rot susceptible, were treated in 1% NaOCl for 2 min, rinsed twice, and placed in plates containing a piece of sterile filter paper saturated with water to induce germination for 3 days. Five pregerminated seeds were placed on the soil surface for each 9-cm-diameter pot, which was filled with a sterile potting mix containing peat, vermiculite, and soil (1:1:1 by v/v/v). A 1-cm-diameter mycelial plug taken from the margin of actively growing colonies (PDA) of the representative isolate KyrFa01 was contacted with each seed, and then seeds were covered with the same potting mix. The seeds in control pots were treated with sterile PDA plugs. The experiment was conducted in a growth chamber in a completely randomized design with five replicated pots at 23°C with a 12-h photoperiod. Disease assessment was made after 4 weeks of fungal inoculation. The isolate KyrFa01 induced discoloration on the crown and root tissues of inoculated plants similar to those observed in the field-grown plants, whereas no symptoms were observed on plants grown in the control pots. The pathogen was successfully reisolated from the symptomatic tissues, confirming Koch's postulates. To the best of our knowledge, this is the first report of crown rot caused by F. algeriense on wheat in Kyrgyzstan. Fusarium algeriense was firstly described within the Fusarium burgessii species complex by Laraba et al. (2017) as a crown rot pathogen of wheat in Algeria. The pathogen was secondly reported from wheat-growing areas in Azerbaijan (Özer et al. 2020a) and thirdly from Kyrgyzstan in this report. Özer et al. (2020b) confirmed the coexistence of this pathogen with other Fusarium species. The result warrants the need to further investigate the potential of this species in the Fusarium crown rot complex of wheat.

2.
Plant Dis ; 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779261

RESUMEN

Fusarium crown rot, caused by several species within the genus, is a major constraint that results in significant losses in wheat production worldwide. In June 2019, diseased wheat plants with typical symptoms of crown rot, including discoloration on the first two or three internodes of the stem just above the soil line and stunted, dry rotted, and discolored roots were collected in several bread wheat fields during the maturity stage in Almaty, East Kazakhstan, and Karaganda Regions of Kazakhstan. For each field, approximately twenty tillers were randomly sampled. Symptomatic tissues were surface sterilized in 1% NaClO for 2 min, rinsed with sterile distilled water three times, air-dried in a laminar flow hood, and then transferred to Petri dishes containing one-fifth strength potato dextrose agar (PDA). After incubating in the dark at 23°C for 5 days, 79 single-spore isolates showing cultural and microscopic characteristics of Fusarium were obtained on PDA and Spezieller-Nährstoffarmer agar (SNA). Colonies were initially white but later produced a beige to pink diffusible pigment in PDA. Microconidia that formed on aerial monophialides were hyaline, 0 to 1 septum, oval- to kidney-shaped, and measured 4.3 to 10.3 × 1.9 to 3.4 µm (average 7.8 × 2.6 µm), whilst macroconidia were straight to slightly curved, 3 to 5 septate, and measured 18.7 to 38.8 × 2.9 to 6.6 µm (average 29.9 × 4.7 µm), with foot-shaped basal cells on SNA. Chlamydospores were present on PDA. Sequence analysis based on portions of translation elongation factor 1α (TEF1) and the nuclear ribosomal internal transcribed spacer region (ITS rDNA) loci with primers EF1/EF2 (O'Donnell et al. 1998) and ITS1/ITS4 (White et al. 1990) identified 29 of the 79 isolates as Fusarium redolens Wollenw. The sequences of the five representative isolates with 99.85% of similarity to those of F. redolens strains available in GenBank e.g., ITS (MT435063) and TEF1 (GU250584). The TEF1 (accession nos. MW403914-MW403918) and ITS rDNA (accession nos. MW397138-MW397142) sequences of the isolates were deposited in GenBank. The morphological features are consistent with the described features of F. redolens (Leslie and Summerell 2006). To confirm pathogenicity of the five isolates, five pre-germinated seeds of wheat cultivar Seri 82 were placed in a 9-cm-diameter pot filled with a sterile potting mix containing equal volumes of peat, vermiculite, and soil. An approximately 1-cm-diameter 7-day-old mycelial plug of each isolate was individually placed in contact with the seeds. Seeds were covered with the same potting mix, and then the pots were maintained for four weeks in a growth chamber at 23°C with a 12-h photoperiod. The experiment was conducted twice with three replicate 15-cm pots with 5 plants per pot. Controls were inoculated with sterile agar plugs using the same procedure. After four weeks, all the inoculated plants showed stunted growth with brown discoloration in most parts of the crown and roots, whereas no symptoms were observed in the control plants. The mean severity of the disease for each isolate was between 2.1 and 2.7 according to the scale of 1 to 5 described by Gebremariam et al. (2015). The pathogen was reisolated from crowns of diseased plants, but not from asymptomatic control tissues, and identified morphologically based on the methods described above, fulfilling Koch's postulates. Although several morphological features are shared by F. oxysporum and F. redolens, Baayen et al. (2001) showed that these species could be easily distinguished using molecular data. The pathogen was previously reported as F. redolens associated with crown rot of wheat in Turkey (Gebremariam et al. 2015) and Saskatchewan, Canada (Taheri et al. 2011). The presence of F. redolens causing crown rot is confirmed in the six wheat fields surveyed in Kazakhstan, for the first time. This pathogen may pose a risk for wheat production, and further studies needed to determine the impact on the crop in Kazakhstan.

3.
Plant Dis ; 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34032487

RESUMEN

In June 2019, approximately 20 tillers of wheat (Triticum aestivum L.) were sampled at the ripening stage (Feekes scale 11) from four different fields in Almaty, Kazakhstan. Brown lesions (3-5 mm in length) were present on the roots of sampled plants, with 20% incidence. To determine the causal agent, diseased roots were surface disinfected in sodium hypochlorite solution (1%) for 3 min, rinsed triple with sterile distilled water, air-dried in a laminar flow hood, and plated onto one-fifth strength potato dextrose agar (PDA) supplemented with 50 ppm chloramphenicol. After three days, the hyphal fragments that developed from the sections were transferred to fresh PDA and incubated at 23°C with 12-h photoperiod for 7 days to obtain pure cultures. Brown pigmented fungal colonies with a constriction at the base of hyphal branches, septa near the branching point, and right-angled branching resembling Rhizoctonia solani were observed. The identification anastomosis group (AG) of a representative isolate for each field was conducted by sequencing the internal transcribed spacer (ITS) region of rDNA with the universal primers ITS4 and ITS5 (White et al. 1990). The resulting sequences of 693 bp length were deposited in GenBank (accession nos. MW898143:MW898146). These sequences were 100% identical to the isolate 8Rs of R. solani AG2-1 (accession no. AF354063). To confirm the pathogenicity of the four isolates, the colonized wheat kernels method described by Demirci (1998) was used to inoculate a sterile potting mix containing peat, vermiculite, and soil (1:1:1 by v/v/v) into which wheat (cv. Seri) was planted. Control pots were inoculated with sterile wheat kernels using the same procedure. Wheat plants were left to grow for four weeks under controlled environmental conditions with a 23°C temperature regime. During the period that the plants remained in the glasshouse, the typical light regime was 16 h. Brown lesions were observed on the roots of plants in the inoculated pots whereas no symptoms were observed on plants grown in the control pots. R. solani was consistently reisolated from symptomatic plants, thereby confirming Koch's postulates. To our knowledge, this is the first report of R. solani AG2-1 on roots of wheat in Kazakhstan. R. solani AG2-1 isolates have been previously reported to be a weak pathogen to wheat (Roberts and Sivasithamparam 1986; Sturrock et al. 2015; Jaaffar et al. 2016; Özer et al. 2019). We suggest further studies are required to characterize the impact of R. solani AG2-1 in wheat. Considering crop rotation, the selection of non-host crops to this AG group is important to pathogen management, by reducing the amount of inoculum in the soil.

4.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675945

RESUMEN

Fungal species associated with crown and root rot diseases in wheat have been extensively studied in many parts of the world. However, no reports on the relative importance and distribution of pathogens associated with wheat crown and root rot in Kyrgyzstan have been published. Hence, fungal species associated with wheat crown/root rot were surveyed in three main wheat production regions in northern Kyrgyzstan. Fungal species were isolated on 1/5 strength potato-dextrose agar amended with streptomycin (0.1 g/L) and chloramphenicol (0.05 g/L). A total of 598 fungal isolates from symptomatic tissues were identified using morphological features of the cultures and conidia, as well as sequence analysis of the nuclear ribosomal internal transcribed spacer (ITS) region, the translation elongation factor 1α (TEF1), and the RNA polymerase II beta subunit (RPB2) genes. The percentage of fields from which each fungus was isolated and their relative percentage isolation levels were determined. Bipolaris sorokiniana, the causal agent of common root rot, was the most prevalent pathogenic species isolated, being isolated from 86.67% of the fields surveyed at a frequency of isolation of 40.64%. Fusarium spp. accounted for 53.01% of all isolates and consisted of 12 different species. The most common Fusarium species identified was Fusarium acuminatum, which was isolated from 70% of the sites surveyed with an isolation frequency of 21.57%, followed by Fusarium culmorum, Fusarium nygamai, Fusarium oxysporum, and Fusarium equiseti, all of which had a field incidence of more than 23%. Inoculation tests with 44 isolates representing 17 species on the susceptible Triticum aestivum cv. Seri 82 revealed that Fusarium pseudograminearum and F. culmorum isolates were equally the most virulent pathogens. The widespread distribution of moderately virulent B. sorokiniana appears to be a serious threat to wheat culture, limiting yield and quality. With the exception of F. culmorum, the remaining Fusarium species did not pose a significant threat to wheat production in the surveyed areas because common species, such as F. acuminatum, F. nygamai, F. oxysporum, and F. equiseti, were non-pathogenic but infrequent species, such as Fusarium redolens, Fusarium algeriense, and F. pseudograminearum, were highly or moderately virulent. Curvularia inaequalis, which was found in three different fields, was mildly virulent. The remaining Fusarium species, Fusarium solani, Fusarium proliferatum, Fusarium burgessii, and Fusarium tricinctum, as well as Microdochium bolleyi, Microdochium nivale, and Macrophomina phaseolina, were non-pathogenic and considered to be secondary colonizers. The implications of these findings are discussed.

5.
J Fungi (Basel) ; 8(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628673

RESUMEN

Kazakhstan is the fourteenth largest wheat producer in the world. Despite this fact, there has not been a comprehensive survey of wheat root and crown rot. A quantitative survey was conducted for the purpose of establishing the distribution of fungi associated with root and crown rot on wheat (Triticum spp.). During the 2019 growing season, samples were taken from the affected plants' roots and stem bases. A total of 1221 fungal isolates were acquired from 65 sites across the central (Karagandy region), eastern (East Kazakhstan region), and southeastern (Almaty region) parts of the country and identified using morphological and molecular tools. The internal transcribed spacer (ITS), translation elongation factor 1-alpha (EF1-α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequences were successfully used to identify the species of fungal isolates. It was found that Bipolaris sorokiniana (44.80%) and Fusarium acuminatum (20.39%) were the most predominant fungal species isolated, which were present in 86.15 and 66.15% of the fields surveyed, respectively, followed by F. equiseti (10.16%), Curvularia spicifera (7.62%), F. culmorum (4.75%), F. oxysporum (4.10%), F. redolens (2.38%), Rhizoctonia solani AG2-1 (1.06%), Nigrospora oryzae (0.98%), C. inaequalis (0.90%), F. pseudograminearum (0.74%), F. flocciferum (0.74%), Macrophomina phaseolina (0.66%), F. cf. incarnatum (0.33%), Fusarium sp. (0.25%), and F. torulosum (0.16%). A total of 74 isolates representing 16 species were tested via inoculation tests on the susceptible Triticum aestivum cv. Seri 82 and the results revealed that F. culmorum and F. pseudograminearum, B. sorokiniana, Fusarium sp., R. solani, F. redolens, C. spicifera, C. inaequalis, and N. oryzae were virulent, whereas others were non-pathogenic. The findings of this investigation demonstrate the presence of a diverse spectrum of pathogenic fungal species relevant to wheat crown and root rot in Kazakhstan. To the best of our knowledge, this is the first report of F. pseudograminearum, Fusarium sp., C. spicifera, and C. inaequalis as pathogens on wheat in Kazakhstan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA