Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(23): e2311462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380776

RESUMEN

Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.


Asunto(s)
Robótica , Humanos , Microtecnología/métodos , Investigación Biomédica Traslacional , Diseño de Equipo
2.
Nat Commun ; 15(1): 2013, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443369

RESUMEN

Electrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 µm-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases.


Asunto(s)
Anticuerpos , Luz , Ultrasonografía , Anisotropía , Neuronas Dopaminérgicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA