Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 123(4): 451-466, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29980568

RESUMEN

RATIONALE: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling-a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. OBJECTIVE: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identified as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. METHODS AND RESULTS: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specific saturation binding assays identified a high-affinity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed efficient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specific antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. CONCLUSIONS: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.


Asunto(s)
Movimiento Celular , Células Progenitoras Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores CXCR/metabolismo , Regeneración , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/citología , Aorta/metabolismo , Aorta/fisiología , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/fisiología , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
2.
Arterioscler Thromb Vasc Biol ; 39(10): 2049-2066, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31340667

RESUMEN

OBJECTIVE: Perivascular adipose tissue (PVAT) plays a vital role in maintaining vascular homeostasis. However, most studies ascribed the function of PVAT in vascular remodeling to adipokines secreted by the perivascular adipocytes. Whether mesenchymal stem cells exist in PVAT and play a role in vascular regeneration remain unknown. Approach and Results: Single-cell RNA-sequencing allowed direct visualization of the heterogeneous PVAT-derived mesenchymal stem cells (PV-ADSCs) at a high resolution and revealed 2 distinct subpopulations, among which one featured signaling pathways crucial for smooth muscle differentiation. Pseudotime analysis of cultured PV-ADSCs unraveled their smooth muscle differentiation trajectory. Transplantation of cultured PV-ADSCs in mouse vein graft model suggested the contribution of PV-ADSCs to vascular remodeling through smooth muscle differentiation. Mechanistically, treatment with TGF-ß1 (transforming growth factor ß1) and transfection of microRNA (miR)-378a-3p mimics induced a similar metabolic reprogramming of PV-ADSCs, including upregulated mitochondrial potential and altered lipid levels, such as increased cholesterol and promoted smooth muscle differentiation. CONCLUSIONS: Single-cell RNA-sequencing allows direct visualization of PV-ADSC heterogeneity at a single-cell level and uncovers 2 subpopulations with distinct signature genes and signaling pathways. The function of PVAT in vascular regeneration is partly attributed to PV-ADSCs and their differentiation towards smooth muscle lineage. Mechanistic study presents miR-378a-3p which is a potent regulator of metabolic reprogramming as a potential therapeutic target for vascular regeneration.


Asunto(s)
Tejido Adiposo/metabolismo , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Factor de Crecimiento Transformador beta1/genética , Remodelación Vascular/genética , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Células Madre Mesenquimatosas/metabolismo , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , ARN Interferente Pequeño/genética , Distribución Aleatoria , Análisis de Secuencia de ARN , Transducción de Señal/genética , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo
3.
J Biol Chem ; 293(21): 8089-8102, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29643181

RESUMEN

Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-ß1 (TGFß1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFß1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts.


Asunto(s)
Prótesis Vascular , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Músculo Liso Vascular/citología , Neovascularización Fisiológica/fisiología , Animales , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones SCID , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología
4.
Arterioscler Thromb Vasc Biol ; 38(1): 232-244, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191922

RESUMEN

OBJECTIVE: Vascular adventitial Sca1+ (stem cell antigen-1) progenitor cells preferentially differentiate into smooth muscle cells, which contribute to vascular remodeling and neointima formation in vessel grafts. Therefore, directing the differentiation of Sca1+ cells toward the endothelial lineage could represent a new therapeutic strategy against vascular disease. APPROACH AND RESULTS: We thus developed a fast, reproducible protocol based on the single-gene transfer of ETV2 (ETS variant 2) to differentiate Sca1+ cells toward the endothelial fate and studied the effect of cell conversion on vascular hyperplasia in a model of endothelial injury. After ETV2 transduction, Sca1+ adventitial cells presented a significant increase in the expression of early endothelial cell genes, including VE-cadherin, Flk-1, and Tie2 at the mRNA and protein levels. ETV2 overexpression also induced the downregulation of a panel of smooth muscle cell and mesenchymal genes through epigenetic regulations, by decreasing the expression of DNA-modifying enzymes ten-eleven translocation dioxygenases. Adventitial Sca1+ cells grafted on the adventitial side of wire-injured femoral arteries increased vascular wall hyperplasia compared with control arteries with no grafted cells. Arteries seeded with ETV2-transduced cells, on the contrary, showed reduced hyperplasia compared with control. CONCLUSIONS: These data give evidence that the genetic manipulation of vascular progenitors is a promising approach to improve vascular function after endothelial injury.


Asunto(s)
Adventicia/metabolismo , Ataxina-1/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Progenitoras Endoteliales/trasplante , Arteria Femoral/cirugía , Terapia Genética/métodos , Factores de Transcripción/metabolismo , Transducción Genética , Remodelación Vascular , Lesiones del Sistema Vascular/cirugía , Animales , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/metabolismo , Epigénesis Genética , Arteria Femoral/metabolismo , Arteria Femoral/patología , Regulación de la Expresión Génica , Hiperplasia , Ratones , Ratones Transgénicos , Fenotipo , Factores de Transcripción/genética , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
5.
Circulation ; 136(11): 1022-1036, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28674110

RESUMEN

BACKGROUND: Dickkopf-related protein 3 (DKK3) is a secreted protein that is involved in the regulation of cardiac remodeling and vascular smooth muscle cell differentiation, but little is known about its role in atherosclerosis. METHODS: We tested the hypothesis that DKK3 is atheroprotective using both epidemiological and experimental approaches. Blood DKK3 levels were measured in the Bruneck Study in 2000 (n=684) and then in 2005 (n=574). DKK3-deficient mice were crossed with apolipoprotein E-/- mice to evaluate atherosclerosis development and vessel injury-induced neointimal formation. Endothelial cell migration and the underlying mechanisms were studied using in vitro cell culture models. RESULTS: In the prospective population-based Bruneck Study, the level of plasma DKK3 was inversely related to carotid artery intima-media thickness and 5-year progression of carotid atherosclerosis independently from standard risk factors for atherosclerosis. Experimentally, we analyzed the area of atherosclerotic lesions, femoral artery injury-induced reendothelialization, and neointima formation in both DKK3-/-/apolipoprotein E-/- and DKK3+/+/apolipoprotein E-/- mice. It was demonstrated that DKK3 deficiency accelerated atherosclerosis and delayed reendothelialization with consequently exacerbated neointima formation. To explore the underlying mechanisms, we performed transwell and scratch migration assays using cultured human endothelial cells, which exhibited a significant induction in cell migration in response to DKK3 stimulation. This DKK3-induced migration activated ROR2 and DVL1, activated Rac1 GTPases, and upregulated JNK and c-jun phosphorylation in endothelial cells. Knockdown of the ROR2 receptor using specific siRNA or transfection of a dominant-negative form of Rac1 in endothelial cells markedly inhibited cell migration and downstream JNK and c-jun phosphorylation. CONCLUSIONS: This study provides the evidence for a role of DKK3 in the protection against atherosclerosis involving endothelial migration and repair, with great therapeutic potential implications against atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Citocinas/deficiencia , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Anciano , Anciano de 80 o más Años , Animales , Grosor Intima-Media Carotídeo/tendencias , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Quimiocinas , Citocinas/administración & dosificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neointima/metabolismo , Neointima/prevención & control , Estudios Prospectivos
6.
Arterioscler Thromb Vasc Biol ; 37(11): 2114-2127, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28935755

RESUMEN

OBJECTIVE: Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. APPROACH AND RESULTS: Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr-/- mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr-/- mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr-/- mice significantly enhanced neointimal formation. CONCLUSIONS: Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor-dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal-regulated kinase)-FAK pathways, which enhanced neointimal formation.


Asunto(s)
Antígenos Ly/metabolismo , Movimiento Celular , Leptina/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Células Madre/metabolismo , Lesiones del Sistema Vascular/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Quinasa 1 de Adhesión Focal/metabolismo , Predisposición Genética a la Enfermedad , Masculino , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/trasplante , Neuropéptidos/metabolismo , Fenotipo , Fosforilación , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Trasplante de Células Madre , Células Madre/patología , Factores de Tiempo , Regulación hacia Arriba , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo
7.
J Biol Chem ; 291(46): 24017-24028, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650497

RESUMEN

Activation of the blood vessel endothelium is a critical step during inflammation. Endothelial cells stimulated by pro-inflammatory cytokines play an essential part in the adhesion and extravasation of circulating leukocytes into inflamed tissues. The endothelial egfl7 gene (VE-statin) represses endothelial cell activation in tumors, and prior observations suggested that it could also participate in the regulation of endothelial cell activation during inflammation. We show here that Egfl7 expression is strongly repressed in mouse lung endothelial cells during LPS- and TNFα-induced inflammation in vivo LPS have a limited effect on Egfl7 expression by endothelial cells in vitro, whereas the pro-inflammatory cytokine TNFα strongly represses Egfl7 expression in endothelial cells. TNFα regulates the egfl7 gene promoter through regions located between -7585 and -5550 bp ahead of the main transcription start site and via an NF-κB-dependent mechanism. Conversely, Egfl7 regulates the response of endothelial cells to TNFα by restraining the induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, resulting in a decreased adhesion of leukocytes onto endothelial cells stimulated by TNFα. Egfl7 regulates the expression of these adhesion molecules through the NF-κB and MEK/Erk pathways, in particular by preventing the proteasome-mediated degradation of IkBα both in non-activated endothelial cells and during activation. Egfl7 is thus an endogenous and constitutive repressor of blood vessel endothelial cell activation in normal and inflammatory conditions and participates in a loop of regulation of activation of these cells by pro-inflammatory cytokines.


Asunto(s)
Factores de Crecimiento Endotelial/biosíntesis , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Elementos de Respuesta , Animales , Proteínas de Unión al Calcio , Familia de Proteínas EGF , Factores de Crecimiento Endotelial/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Células Jurkat , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
8.
Development ; 139(21): 3973-85, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22932696

RESUMEN

During murine embryogenesis, the Ets factor Erg is highly expressed in endothelial cells of the developing vasculature and in articular chondrocytes of developing bone. We identified seven isoforms for the mouse Erg gene. Four share a common translational start site encoded by exon 3 (Ex3) and are enriched in chondrocytes. The other three have a separate translational start site encoded by Ex4 and are enriched in endothelial cells. Homozygous Erg(ΔEx3/ΔEx3) knockout mice are viable, fertile and do not display any overt phenotype. By contrast, homozygous Erg(ΔEx4/ΔEx4) knockout mice are embryonic lethal, which is associated with a marked reduction in endocardial-mesenchymal transformation (EnMT) during cardiac valve morphogenesis. We show that Erg is required for the maintenance of the core EnMT regulatory factors that include Snail1 and Snail2 by binding to their promoter and intronic regions.


Asunto(s)
Endocardio/metabolismo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Mesodermo/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Endocardio/embriología , Genotipo , Mesodermo/embriología , Ratones , Ratones Noqueados , Morfogénesis , Proteínas Oncogénicas/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG
9.
J Biol Chem ; 287(9): 6582-91, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22235125

RESUMEN

ETS-related gene (ERG) is a member of the ETS transcription factor family. Our previous studies have shown that ERG expression is highly enriched in endothelial cells (EC) both in vitro and in vivo. ERG expression is markedly repressed in response to inflammatory stimuli. It has been shown that ERG is a positive regulator of several EC-restricted genes including VE-cadherin, endoglin, and von Willebrand factor, and a negative regulator of other genes such as interleukin (IL)-8 and intercellular adhesion molecule (ICAM)-1. In this study we have identified a novel role for ERG in the regulation of EC barrier function. ERG knockdown results in marked increases in EC permeability. This is associated with a significant increase of stress fiber and gap formation in EC. Furthermore, we identify CLDN5 as a downstream target of ERG in EC. Thus, our results suggest that ERG plays a pivotal role in regulating EC barrier function and that this effect is mediated in part through its regulation of CLDN5 gene expression.


Asunto(s)
Permeabilidad Capilar/fisiología , Claudinas/genética , Células Endoteliales/metabolismo , Transactivadores/metabolismo , Activación Transcripcional/fisiología , Adenoviridae/genética , Permeabilidad Capilar/efectos de los fármacos , Claudina-5 , Vasos Coronarios/citología , Citoesqueleto/fisiología , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/fisiología , Microvasos/citología , Mutagénesis Sitio-Dirigida , Arteria Pulmonar/citología , Transactivadores/genética , Regulador Transcripcional ERG , Factor de Necrosis Tumoral alfa/farmacología
10.
EMBO J ; 28(20): 3196-206, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19713933

RESUMEN

Activation of the DNA damage checkpoint causes a cell-cycle arrest through inhibition of cyclin-dependent kinases (cdks). To successfully recover from the arrest, a cell should somehow be maintained in its proper cell-cycle phase. This problem is particularly eminent when a cell arrests in G2, as cdk activity is important to establish a G2 state. Here, we identify the phosphatase Wip1 (PPM1D) as a factor that maintains a cell competent for cell-cycle re-entry during an ongoing DNA damage response in G2. We show that Wip1 function is required throughout the arrest, and that Wip1 acts by antagonizing p53-dependent repression of crucial mitotic inducers, such as Cyclin B and Plk1. Our data show that the primary function of Wip1 is to retain cellular competence to divide, rather than to silence the checkpoint to promote recovery. Our findings uncover Wip1 as a first in class recovery competence gene, and suggest that the principal function of Wip1 in cellular transformation is to retain proliferative capacity in the face of oncogene-induced stress.


Asunto(s)
Fase G2/fisiología , Fosfoproteínas Fosfatasas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina B/genética , Ciclina B/metabolismo , Citometría de Flujo , Fase G2/genética , Humanos , Microscopía , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/genética , Quinasa Tipo Polo 1
11.
Blood ; 118(4): 1145-53, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21628409

RESUMEN

ERG is a member of the ETS transcription factor family that is highly enriched in endothelial cells (ECs). To further define the role of ERG in regulating EC function, we evaluated the effect of ERG knock-down on EC lumen formation in 3D collagen matrices. Blockade of ERG using siRNA completely interferes with EC lumen formation. Quantitative PCR (QPCR) was used to identify potential downstream gene targets of ERG. In particular, we identified RhoJ as the Rho GTPase family member that is closely related to Cdc42 as a target of ERG. Knockdown of ERG expression in ECs led to a 75% reduction in the expression of RhoJ. Chromatin immunoprecipitation and transactivation studies demonstrated that ERG could bind to functional sites in the proximal promoter of the RhoJ gene. Knock-down of RhoJ similarly resulted in a marked reduction in the ability of ECs to form lumens. Suppression of either ERG or RhoJ during EC lumen formation was associated with a marked increase in RhoA activation and a decrease in Rac1 and Cdc42 activation and their downstream effectors. Finally, in contrast to other Rho GTPases, RhoJ exhibits a highly EC-restricted expression pattern in several different tissues, including the brain, heart, lung, and liver.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/metabolismo , Transactivadores/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Western Blotting , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Rayos Láser , Ratones , Ratones Desnudos , Microdisección , Morfogénesis , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Regulador Transcripcional ERG
12.
Nat Cell Biol ; 7(2): 126-36, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15654331

RESUMEN

Transcriptional induction of cell-cycle regulatory proteins ensures proper timing of subsequent cell-cycle events. Here we show that the Forkhead transcription factor FoxM1 regulates expression of many G2-specific genes and is essential for chromosome stability. Loss of FoxM1 leads to pleiotropic cell-cycle defects, including a delay in G2, chromosome mis-segregation and frequent failure of cytokinesis. We show that transcriptional activation of cyclin B by FoxM1 is essential for timely mitotic entry, whereas CENP-F, another direct target of FoxM1 identified here, is essential for precise functioning of the mitotic spindle checkpoint. Thus, our data uncover a transcriptional cluster regulated by FoxM1 that is essential for proper mitotic progression.


Asunto(s)
Inestabilidad Cromosómica , Mitosis , Factores de Transcripción/fisiología , Animales , Ciclo Celular , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Unión al ADN/fisiología , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas de Microfilamentos
13.
Rev Bras Enferm ; 73(s6): e20190409, 2020.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-33263672

RESUMEN

OBJECTIVES: map both nursing interventions for the prevention of falls in paediatric age during hospitalization and the instruments for assessing the risk of falls in paediatrics. METHODS: scoping review according to the protocol of Joanna Briggs Institute, with acronym PCC (P - children, C - fall preventive nursing interventions and instruments for assessing the risk of falling, C - hospital admission), in three sources of information (EBSCO, PubMed and SciELO). RESULTS: the sample consisted of seven articles. The education of the child/family is the basis of the interventions, and the instruments for assessing the risk of falling identified were: Humpty Dumpty Falls Scale, GRAF PIF, CUMMINGS, I'M SAFE and CHAMPS. CONCLUSIONS: the education of children/parents on preventive measures is important and should be reinforced during hospitalization, using different methodologies. The Humpty Dumpty Falls Scale was the most analyzed.


Asunto(s)
Accidentes por Caídas/prevención & control , Hospitalización , Pediatría , Niño , Atención a la Salud , Humanos
14.
BMC Dev Biol ; 9: 72, 2009 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20030844

RESUMEN

BACKGROUND: The molecular mechanisms that govern stem cell differentiation along the endothelial lineage remain largely unknown. Ets related gene (ERG) has recently been shown to participate in the transcriptional regulation of a number of endothelial specific genes including VE-cadherin (CD144), endoglin, and von Willebrand's Factor (vWF). The specific role of the ETS factor ERG during endothelial differentiation has not been evaluated. RESULTS: ERG expression and function were evaluated during the differentiation of embryonic stem cells into embryoid bodies (EB). The results of our study demonstrate that ERG is first expressed in a subpopulation of vascular endothelial growth factor receptor 2 (VEGF-R2) expressing cells that also express VE-cadherin. During ES cell differentiation, ERG expression remains restricted to cells of the endothelial lineage that eventually coalesce into primitive vascular structures within embryoid bodies. ERG also exhibits an endothelial cell (EC)-restricted pattern during embryogenesis. To further define the role of ERG during ES cell differentiation, we used a knockdown strategy to inhibit ERG expression. Delivery of three independent shRNA led to 70-85% reductions in ERG expression during ES cell differentiation compared to no change with control shRNA. ERG knockdown was associated with a marked reduction in the number of ECs, the expression of EC-restricted genes, and the formation of vascular structures. CONCLUSION: The ETS factor ERG appears to be a critical regulator of EC differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , Proteínas Oncogénicas/metabolismo , Animales , Células Madre Embrionarias/citología , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Oncogénicas/genética , Factores de Transcripción , Regulador Transcripcional ERG
16.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA