RESUMEN
Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2-4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6-9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12-14. We found that the explosive behaviour of the water-alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10-4 millibar onto liquid sodium-potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.
RESUMEN
We investigate the electronic structure of aromatic radical anions in the solution phase employing a combination of liquid-jet (LJ) photoelectron (PE) spectroscopy measurements and electronic structure calculations. By using recently developed protocols, we accurately determine the vertical ionization energies of valence electrons of both the solvent and the solute molecules. In particular, we first characterize the pure solvent of tetrahydrofuran (THF) by LJ-PE measurements in conjunction with ab initio molecular dynamics simulations and G0W0 calculations. Next, we determine the electronic structure of neutral naphthalene (Np) and benzophenone (Bp) as well as their radical anion counterparts Np- and Bp- in THF. Wherever feasible, we performed orbital assignments of the measured PE features of the aromatic radical anions, with comparisons to UV-vis absorption spectra of the corresponding neutral molecules being instrumental in rationalizing the assignments. Analysis of the electronic structure differences between the neutral species and their anionic counterparts provides understanding of the primarily electrostatic stabilization of the radical anions in solution. Finally, we obtain a very good agreement of the reduction potentials extracted from the present LJ-PES measurements of Np- and Bp- in THF with previous electrochemical data from cyclic voltammetry measurements. In this context, we discuss how the choice of solvent holds significant implications for optimizing conditions for the Birch reduction process, wherein aromatic radical anions play crucial roles as reactive intermediates.
RESUMEN
Symmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.
Asunto(s)
Fotosíntesis , Energía Solar , Compuestos de Boro , Catálisis , Luz SolarRESUMEN
The photoluminescence properties of organic-inorganic pyridinium lead bromide [(pyH)PbBr3] and iodide [(pyH)PbI3] compounds were investigated as a function of temperature. The inorganic substructure consists of face-sharing chains of PbX6 octahedra. Diffuse reflectance spectra of the compounds show low energy absorption features consistent with charge transfer transitions from the PbX3 chains to the pyridinium cations. Both compounds display extremely weak luminescence at room temperature that becomes strongly enhanced upon cooling to 77 K. Broad, featureless low energy emission (λem > 600 nm) in both compounds have large Stokes shifts [1.1 eV for (pyH)PbBr3 and 0.46 eV for (pyH)PbI3] and are assigned to transitions from self-trapped excitons on the inorganic chains whereas emission at higher energy in (pyH)PbBr3 (λem = 450 nm) is assigned to luminescence from a free exciton state. Analysis of data from temperature-dependent luminescence intensity measurements gives activation energies (Ea) for non-radiative decay of the self-trapped excitons in (pyH)PbBr3 and (pyH)PbI3, (Ea = 0.077 eV and 0.103 eV, respectively) and for the free exciton in (pyH)PbBr3 (Ea = 0.010 eV). Analysis of temperature dependent luminescence lifetime data indicates another non-radiative decay process in (pyH)PbI3 at higher temperatures (Ea = 0.17 eV). A large increase in the luminescence lifetime of (pyH)PbI3 below 80 K is consistent with thermalization between triplet sublevels. Analysis of the luminescence power dependence for (pyH)PbI3 shows superlinear response suggestive of quenching by static traps.
RESUMEN
The power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited. Here, we use quantum dots (QDs) to study the coordinative surface interaction between phosphonium-based ILs and CsPbBr3. When native oleylammonium oleate ligands are exchanged off the QD surface with the phosphonium cation as well as the IL anion, a threefold increase in photoluminescent quantum yield of as-synthesized QDs is observed. The CsPbBr3 QD structure, shape, and size remain unchanged after ligand exchange, indicating only a surface ligand interaction at approximately equimolar additions of the IL. Increased concentrations of the IL lead to a disadvantageous phase change and a concomitant decrease in photoluminescent quantum yields. Valuable information regarding the coordinative interaction between certain ILs and lead halide perovskites has been elucidated and can be used for informed pairing of beneficial combinations of IL cations and anions.
RESUMEN
Hexafluorobenzene and many of its derivatives exhibit a chemoselective photochemical isomerization, resulting in highly strained, Dewar-type bicyclohexenes. While the changes in absorption and emission associated with benzene hexafluorination have been attributed to the so-called "perfluoro effect", the resulting electronic structure and photochemical reactivity of hexafluorobenzene is still unclear. We now use a combination of ultrafast time-resolved spectroscopy, multiconfigurational computations, and non-adiabatic dynamics simulations to develop a holistic description of the absorption, emission, and photochemical dynamics of the 4π-electrocyclic ring-closing of hexafluorobenzene and the fluorination effect along the reaction coordinate. Our calculations suggest that the electron-withdrawing fluorine substituents induce a vibronic coupling between the lowest-energy 1B2u (ππ*) and 1E1g (πσ*) excited states by selectively stabilizing the σ-type states. The vibronic coupling occurs along vibrational modes of e2u symmetry which distorts the excited-state minimum geometry resulting in the experimentally broad, featureless absorption bands, and a â¼100 nm Stokes shift in fluorescence-in stark contrast to benzene. Finally, the vibronic coupling is shown to simultaneously destabilize the reaction pathway toward hexafluoro-benzvalene and promote molecular vibrations along the 4π ring-closing pathway, resulting in the chemoselectivity for hexafluoro-Dewar-benzene.
RESUMEN
Two-photon absorption (2PA) spectra of liquid cyclohexane and hexanes are reported for the energy range 6.4-8.5 eV (177-145 nm), providing detailed information about their electronic structures in bulk liquid. Using a broadband pump-probe fashion, we measured the continuous 2PA spectra by simultaneous absorption of a 266 nm (4.6 eV) pump photon and one UV-vis probe photon from the white-light continuum (1.8-3.9 eV). Theoretical one-photon absorption (1PA) and 2PA cross sections of isolated gas phase molecules are computed by the equation of motion coupled-cluster method with single and double substitutions (EOM-CCSD) to substantiate the assignment of the experimental spectra, and the natural transition orbital (NTO) analysis provides visualization of the participating orbitals in a transition. Our analysis suggests that upon solvation transitions at the lowest excitation energy involving promotion of electron to the 3s Rydberg orbitals are blue-shifted (â¼0.55 eV for cyclohexane and â¼0.18 eV for hexanes) to a greater extent as compared to those involving other Rydberg orbitals, which is similar to the behavior observed for water and alcohols. All other transitions experience negligible (cyclohexane) or minor red-shift by â¼0.15-0.2 eV (hexane) upon solvation. In both alkanes, the spectra are entirely dominated by Rydberg transitions: the most intense bands in 1PA and 2PA spectra are due to the excitation of electrons to the Rydberg "p" and "d" type orbitals, respectively, although one transition terminating in the 3s Rydberg has significant 2PA strength. This work demonstrates that the gas phase electronic transition properties in alkanes are not significantly altered upon solvation. In addition, electronic structure calculations using an isolated-molecule framework appear to provide a reasonable starting point for a semiquantitative picture for spectral assignment and also to analyze the solvatochromic shifts for liquid phase absorption spectra.
RESUMEN
Photoelectron spectroscopy of microjets expanded into vacuum allows access to orbital energies for solute or solvent molecules in the liquid phase. Microjets of water, acetonitrile and alcohols have previously been studied; however, it has been unclear whether jets of low temperature molecular solvents could be realized. Here we demonstrate a stable 20 µm jet of liquid ammonia (-60 °C) in a vacuum, which we use to record both valence and core-level band photoelectron spectra using soft X-ray synchrotron radiation. Significant shifts from isolated ammonia in the gas-phase are observed, as is the liquid-phase photoelectron angular anisotropy. Comparisons with spectra of ammonia in clusters and the solid phase, as well as spectra for water in various phases potentially reveal how hydrogen bonding is reflected in the condensed phase electronic structure.
RESUMEN
A systematic study is presented on the physical and photophysical properties of isoelectronic and isostructural Cu, Ag, and Au complexes with a common amide (N-carbazolyl) and two different carbene ligands (i.e., CAAC = (5 R,6 S)-2-(2,6-diisopropylphenyl)-6-isopropyl-3,3,9-trimethyl-2-azaspiro[4.5]decan-2-ylidene, MAC = 1,3-bis(2,6-diisopropylphenyl)-5,5-dimethyl-4-keto-tetrahydropyridylidene). The crystal structures of the (carbene)M(I)(N-carbazolyl) (MCAAC) and (MAC)M(I)(N-carbazolyl) (MMAC) complexes show coplanar carbene and carbzole ligands and C-M-N bond angles of â¼180°. The electrochemical properties and energies for charge transfer (CT) absorption and emission compounds are not significantly affected by the choice of metal ion. All six of the (carbene)M(Cz) complexes examined here display high photoluminescence quantum yields of 0.8-1.0. The compounds have short emission lifetimes (τ = 0.33-2.8 µs) that fall in the order Ag < Au < Cu, with the lifetimes of (carbene)Ag(Cz) roughly a factor of 10 shorter than for (carbene)Cu(Cz) complexes. Detailed temperature-dependent photophysical measurements (5-325 K) were carried out to determine the singlet and triplet emission lifetimes (τfl and τph, respectively) and the energy difference between the singlet and triplet excited state, Δ ES1-T1. The τfl values range between 20 and 85 ns, and the τph values are in the 50-200 µs regime. The emission at room temperature is due exclusively to E-type delayed fluorescence or TADF (i.e., T1âΔS1âS0+hν ). The emission rate at room temperature is fully governed by Δ ES1-T1, with the silver complexes giving Δ ES1-T1 values of 150-180 cm-1 (18-23 meV), whereas the gold and copper complexes give values of 570-590 cm-1 (70-73 meV).
RESUMEN
Symmetry breaking charge transfer (SBCT) is a process where a symmetrically disposed pair of identical chromophores forms a charge transfer excited state with the hole and electron on different chromophores, i.e. chr-chr + hν â chr+-chr-. Herein we explore this process in two dipyrrin-based bichromophoric systems. One of these bisdipyrrins involved a pair of BODIPY chromophores linked by a single bond at their meso-positions (compound 1) and the other involved two dipyrrin ligands coordinated in a tetrahedral geometry at the Zn2+ ion (compound 2). Both compounds show rapid SBCT in polar solvents and only dipyrrin based emission in nonpolar solvents, the latter arising from a dipyrrin localized excited sate (LE). By "tuning" the solvent polarity the equilibrium between the LE and SBCT states can be shifted to favor either state. Ultrafast transient absorption spectroscopy (TA) was used to probe the kinetics of the charge transfer for 2 in solvents where the electron transfer is endergonic, exergonic and has a ΔG close to zero. Our TA derived rates were used to predict fluorescence efficiencies in each of the different solvent systems and showed a good correspondence to measured values. Detailed density functional theory (DFT) and time dependent DFT were used to model the ground states as well as the LE and SBCT states of 1 and 2, in both polar and nonpolar media. The ground and LE excited states show small dipole moments, while the SBCT states show dipole moments of 16.4 and 20.3 D for 1 and 2, respectively.
RESUMEN
Two-photon absorption (2PA) spectra of liquid methanol and ethanol are reported for the energy range 7-10 eV from the first electronic excitation to close to the liquid-phase ionization potential. The spectra give detailed information on the electronic structures of these alcohols in the bulk liquid. The focus of this Article is to examine the electronic structure change compared with water on substitution of a hydrogen by an alkyl group. Continuous 2PA spectra are recorded in the broadband pump-probe fashion, with a fixed pump pulse in the UV region and a white-light continuum as a probe. Pump pulses of two different energies, 4.6 and 6.2 eV, are used to cover the spectral range up to 10 eV. In addition, theoretical 2PA cross sections for both molecules isolated in the gas phase are computed by the equation-of-motion coupled-cluster method with single and double substitutions (EOM-CCSD). These computational results are used to assign both the experimental 2PA and literature one-photon linear absorption spectra. The most intense spectral features are due to transitions to the Rydberg states, and the 2PA spectra are dominated by the totally symmetric 3pz â 2pz transition in both alcohols. The experimental 2PA spectra are compared with the simulated 2PA spectra based on ab initio calculations that reveal a general blue shift of the excited transitions upon solvation. The effective 2PA thresholds in methanol and ethanol decrease to 6.9 eV compared with 7.8 eV for water. The analysis of the 2PA polarization ratio leads us to conclude that the excited states of ethanol deviate more markedly from water in the lower energy region compared with methanol. The polarization dependence of the 2PA spectra reveal the symmetries of the excited states within the measured energy range. Natural transition orbital calculations are performed to visualize the nature of the transitions and the orbitals participating during electronic excitation.
RESUMEN
A series of CdSe quantum dot acceptors possessing six different ligand frameworks (i.e., pivalic acid, pyridine, butylamine, tert-butylthiol, thiophenol, and tetrahydrothiophene) were used as platforms for investigating the influence of quantum dot surface chemistry on the performance of hybrid poly(3-hexythiophene-2,5-diyl) (P3HT):CdSe quantum dot bulk heterojunction (BHJ) solar cells. We confirm that the device parameters used to evaluate solar cell performance are significantly influenced by the nature of the quantum dot surface ligand. The dependence of short circuit current density (JSC) on the CdSe ligand type was probed using ultrafast time-resolved photoluminescence (PL) measurements, and good correlations between the ligand-dependent trends in JSC and excited state lifetime were found, in which the P3HT:CdSe quantum dot BHJs with the shortest PL lifetimes possess the largest device current densities. The frontier energy levels of the quantum dot acceptors are significantly influenced by surface ligands, wherein the device open circuit potentials (VOC) were found to linearly correlate with the energy difference (ΔEDA) between the HOMO of the P3HT donor and the electrochemically determined LUMO of the CdSe quantum dot acceptors over a range of 220 mV. This work demonstrates the versatility of quantum dot ligand engineering for tuning the device parameters and performance of hybrid solar cells.
RESUMEN
Separation of triplet excitons produced by singlet fission is crucial for efficient application of singlet fission materials. While earlier works explored the first step of singlet fission, the formation of the correlated triplet pair state, the focus of recent studies has been on understanding the second step of singlet fission, the formation of independent triplets from the correlated pair state. We present the synthesis and excited-state dynamics of meta- and para-bis(ethynyltetracenyl)benzene dimers that are analogues to the ortho-bis(ethynyltetracenyl)benzene dimer reported by our groups previously. A comparison of the excited-state properties of these dimers allows us to investigate the effects of electronic conjugation and coupling on singlet fission between the ethynyltetracene units within a dimer. In the para isomer, in which the two chromophores are conjugated, the singlet exciton yields the correlated triplet pair state, from which the triplet excitons can decouple via molecular rotations. In contrast, the meta isomer in which the two chromophores are cross-coupled predominantly relaxes via radiative decay. We also report the synthesis and excited-state dynamics of two para dimers with different bridging units joining the ethynyltetracenes. The rate of singlet fission is found to be faster in the dimer with the bridging unit that has orbitals closer in energy to that of the ethynyltetracene chromophores.
RESUMEN
Understanding how the electronic structure of an aqueous solute is intricately bound up with the arrangement of a host liquid provides insight into how non-adiabatic photochemistry takes place in the condensed phase. For example, the presence of water provides additional solute-solvent interactions compared to non-polar solvents: changing the stability of ionized products and modifying the energies of low-lying excited valence states, as well as moving the point of intersection between potential surfaces. Thus, the locations and topography of conical intersections between these surfaces also change. The overall impact of the aqueous environment can be to modify the intricate photochemical and non-radiative pathways taking place after photoexcitation. Time-resolved photoelectron spectroscopy (TRPES) in a liquid micro-jet is implemented here to investigate the influence of water on the electronic structure and dynamics of indole, the chromophore of the amino acid tryptophan. TRPES is used to establish ultrafast relaxation pathways that vary as a function of excitation wavelength. In our experiment, aqueous indole was excited with femtosecond pulses centered at 292 nm and 266 nm. The vertical excitation energy of aqueous indole is extracted and found to be lowered by 0.5 eV in water relative to the gas phase. In the TRPES study, the spectral signature of 1La and evidence of solvated electron formation on an ultrafast timescale are observed. Our data also points to a possible contribution of the dissociative πσ* state, which can be accessed by a conical intersection (CI) with the 1La state.
RESUMEN
The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.
Asunto(s)
Electrones , Espectroscopía de Fotoelectrones/métodos , Agua/química , ADN/química , Electrólitos/química , Iones/química , Nucleótidos/química , Sales (Química)/química , Soluciones , Elementos de Transición/químicaRESUMEN
We report a study on the optical properties of the layered polymorph of vacancy-ordered triple perovskite Cs3Bi2Br9. The electronic structure, determined from density functional theory calculations, shows the top of the valence band and bottom of the conduction band minima are, unusually, dominated by Bi s and p states, respectively. This produces a sharp exciton peak in the absorption spectra with a binding energy that was approximated to be 940 meV, which is substantially stronger than values found in other halide perovskites and, instead, more closely reflects values seen in alkali halide crystals. This large binding energy is indicative of a strongly localized character and results in a highly structured emission at room temperature as the exciton couples to vibrations in the lattice.
RESUMEN
Singlet fission is a process in which a singlet exciton converts into two triplet excitons. To investigate this phenomenon, we synthesized two covalently linked 5-ethynyl-tetracene (ET) dimers with differing degrees of intertetracene overlap: BET-X, with large, cofacial overlap of tetracene π-orbitals, and BET-B, with twisted arrangement between tetracenes exhibits less overlap between the tetracene π-orbitals. The two compounds were crystallographically characterized and studied by absorption and emission spectroscopy in solution, in PMMA and neat thin films. The results show that singlet fission occurs within 1 ps in an amorphous thin film of BET-B with high efficiency (triplet yield: 154%). In solution and the PMMA matrix the S1 of BET-B relaxes to a correlated triplet pair (1)(T1T1) on a time scale of 2 ps, which decays to the ground state without forming separated triplets, suggesting that triplet energy transfer from (1)(T1T1) to a nearby chromophore is essential for producing free triplets. In support of this hypothesis, selective excitation of BET-B doped into a thin film of diphenyltetracene (DPT) leads to formation of the (1)(T1T1) state of BET-B, followed by generation of both DPT and BET-B triplets. For the structurally cofacial BET-X, an intermediate forms in <180 fs and returns to the ground state more rapidly than BET-B. First-principles calculations predict a 2 orders of magnitude faster rate of singlet fission to the (1)(T1T1) state in BET-B relative to that of crystalline tetracene, attributing the rate increase to greater coupling between the S1 and (1)(T1T1) states and favorable energetics for formation of the separated triplets.
RESUMEN
Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry.