Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283107

RESUMEN

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 µm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 µm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient's positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía de Coherencia Óptica , Odontología , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Rayos X
2.
Opt Express ; 26(17): 21831-21842, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130886

RESUMEN

This paper demonstrates that the complex master slave interferometry (CMSI) method used in spectral domain interferometry (SDI) can efficiently be used for accurate refractive index and group velocity dispersion measurements of optically transparent samples. For the first time, we demonstrate the relevance of the phase information delivered by CMSI for dispersion evaluations with no need to linearize data. The technique proposed here has been used to accurately measure the group refractive index and the group velocity dispersion of a strong dispersive sample (SF6 glass), and a weak dispersive one (distilled water). The robustness of the technique is demonstrated through the manipulation of several sets of experimental data.

3.
Opt Express ; 25(13): 14533-14544, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789039

RESUMEN

The paper presents a proof-of-concept polarization-sensitive swept source optical coherence tomography (OCT) system that performs measurements of the retardance as well as of the axis orientation of a linear birefringent sample. The system performs single input state polarization-sensitive OCT and employs an optical module based on optically passive elements such as two beam displacers and a Faraday rotator. Our implementation of the PS-OCT system does not need any calibration step to compensate for the polarimetric effect of the fibers, and its operation does not require a balanced polarization-diversity detector. The optical module allows measurement of the two polarization properties of the sample via two measurements which are performed simultaneously.

4.
Appl Opt ; 56(12): 3378-3382, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28430264

RESUMEN

In this paper we investigate a phase-correction method for compensation of the nonlinearity of conventional wavelength-swept laser sources based on a fiber Fabry-Perot tunable filter as a wavelength selective element. A triangular waveform signal is commonly used to drive the filter. We, however, extract the zero crossings from the interferograms and modify the shape of the triangular signal accordingly. This algorithm was tested for different values of the optical path length difference in the interferometer setup. Significant compensation for the nonlinearity of the filter was obtained.

5.
Opt Express ; 24(3): 2885-904, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906857

RESUMEN

A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

6.
Appl Opt ; 55(21): 5707-14, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27463927

RESUMEN

A broadband supercontinuum light source with an acousto-optic tunable filter (AOTF) are used to characterize dispersion in two time-domain OCT systems, at 850 and 1300 nm. The filter is designed to sweep across two spectral ranges, which are restricted here from 800 to 900 nm and from 1200 to 1500 nm, respectively. Dispersion compensation for 850 nm was achieved with a spectral delay line. Dispersion compensation for 1300 nm was achieved using BK 7 rod glasses in the reference arm. The AOTF allows evaluation of dispersion in under as well as overcompensated systems. The AOTF method is based on wavelength dependence of the optical path difference corresponding to the maximum strength of the interference signal recorded using a mirror as object. Comparison is made between the AOTF method and the more usual method based on measurement of the full width at half-maximum of the autocorrelation peak. This comparison shows that the AOTF method is more accurate in terms of evaluation of the dispersion left uncompensated after each adjustment. The AOTF method additionally provides information on the direction of dispersion compensation.

7.
Appl Opt ; 55(26): 7378-86, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27661377

RESUMEN

Optical coherence tomography (OCT) is fast emerging as an additional non-interventional modality for skin tumor detection and diagnosis. A master/slave flying spot OCT configuration was assembled to detect periocular basal cell carcinomas (BCC). A swept source at 1300 nm and sweeping speed of 50 kHz were used. A three-step process was involved. First, 384 channeled spectra using a mirror were stored for 384 optical path differences at the master stage. Then, the stored channeled spectra (masks) were correlated with the channeled spectrum from the BCC tissue to produce 384 en face OCT images (200×200 pixels) for the optical path difference values used to acquire the masks. Finally, these en face slices were stacked to form a volume to cross-reference BCC tumor margins in the orthogonal plane. Per each eyelid sample, several en face images of 200×200 lateral pixels are produced in the time to scan laterally a complete raster of 1.6 s. Combination of the en face views with the cross-sectioning views allow for better discrimination of BCCs comparable to using cross-sectional imaging alone, as previously reported using the conventional fast-Fourier-transform-based OCT techniques.


Asunto(s)
Carcinoma Basocelular/diagnóstico por imagen , Neoplasias de los Párpados/diagnóstico , Neoplasias Cutáneas/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Análisis de Fourier , Humanos
8.
Opt Express ; 23(18): 23768-86, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26368471

RESUMEN

A new set-up is proposed to measure the full polarimetric properties of a sample through an optical fiber, paving the way to full-Mueller endoscopic imaging. The technique combines a channeled spectrum polarimeter and an interferometer. This permits high-speed measurement of two Mueller matrices simultaneously. The first matrix characterizes only the fiber while the second characterizes both fiber and sample. The instrument is validated on vacuum, a quarter-wave plate and a linear polarizer for single-point measurements. Insensitivity of the polarimetric measurement to fiber disturbances is proven while manipulating the fiber.

9.
Opt Express ; 23(11): 14148-61, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072783

RESUMEN

A theoretical model is developed for the Master/Slave interferometry (MSI) that is used to demonstrate its tolerance to dispersion left uncompensated in the interferometer when evaluating distances and thicknesses. In order to prove experimentally its tolerance to dispersion, different lengths of optical fiber are inserted into the interferometer to introduce dispersion. It is demonstrated that the sensitivity profile versus optical path difference is not affected by the length of fiber left uncompensated. It is also demonstrated that the axial resolution is constant within the axial range, close to the expected theoretical resolution determined by the optical source bandwidth. Then the thickness of a glass plate is measured several times in the presence of dispersion and errors in measurements are evaluated using the MSI method and the conventional Fourier transformation (FT) based method using linearized/calibrated data. The standard deviation for thickness results obtained with the MSI is more than 5 times smaller than the standard deviation for results delivered by the conventional, FT based method.

10.
Opt Lett ; 40(16): 3858-61, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26274678

RESUMEN

This Letter presents a spectral-domain, polarization-sensitive optical coherence tomography (PS-OCT) system, where the light collection from the two arms of the interferometer is performed exclusively using single-mode fibers and couplers, and the two orthogonal polarization components are sequentially detected by a single line camera. Retardance measurements can be affected by polarimetric effects because of fiber birefringence and diattenuation in fiber couplers. This configuration bypasses such issues by performing polarization selection before the collection fiber through the combination of a polarization rotator and a linear polarizer. Retardance calibration is achieved with a Berek compensator. Similar net retardance maps of a birefringent phantom are obtained for two different settings of induced fiber birefringence, effectively demonstrating the tolerance of the configuration to fiber-based disturbances.


Asunto(s)
Fibras Ópticas , Tomografía de Coherencia Óptica/instrumentación , Birrefringencia , Relación Señal-Ruido
11.
Opt Lett ; 40(17): 4014-7, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368700

RESUMEN

A configuration for Talbot bands is presented in which two tilted gratings replace the splitter normally used for recombining the signals from the two interferometer arms. The two optical beams from the interferometer are launched by two fiber leads tightly brought together in the front focal plane of a collimating lens. As the tips of the two fibers are slightly off-axis, the emergent beams after the collimating lens are not parallel. In combination with the two tilted gratings, the nonparallel launching of the two beams leads to a total elimination of mirror terms even when the two beams overlap on either grating. The effects of several geometrical parameters on the visibility performance versus optical path difference between the two arm lengths of the interferometer are evaluated.


Asunto(s)
Interferometría/instrumentación , Fibras Ópticas , Fenómenos Ópticos
12.
Opt Lett ; 39(3): 450-3, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24487837

RESUMEN

We report on a novel method to produce B-scan images in spectral domain optical coherence tomography (SD-OCT). The method proceeds in two steps. In the first step, using a mirror in the sample arm of the interferometer, channelled spectra are acquired for different values of the optical path difference (OPD) and stored as masks. In the second step, the mirror is replaced with an object and the captured channelled spectrum is correlated with each mask, providing the interference strength from the OPD value used to collect the respective mask. Such a procedure does not require data organized in equal frequency slots, and therefore there is no need for resampling as practiced in the conventional fast Fourier transform (FFT)-based SD-OCT technology. We show that the sensitivity drop-off versus OPD and the quality of B-scan images of the novel method are similar to those obtained in the conventional FFT-based SD-OCT, using spectral data linearly organized in frequency.


Asunto(s)
Tomografía de Coherencia Óptica/métodos , Calibración , Análisis de Fourier
13.
Appl Opt ; 53(26): 5912-6, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25321671

RESUMEN

We demonstrate the capability of optical coherence tomography (OCT) to perform topography of metallic surfaces after being subjected to ductile or brittle fracturing. Two steel samples, OL 37 and OL 52, and an antifriction Sn-Sb-Cu alloy were analyzed. Using an in-house-built swept source OCT system, height profiles were generated for the surfaces of the two samples. Based on such profiles, it can be concluded that the first two samples were subjected to ductile fracture, while the third one was subjected to brittle fracture. The OCT potential for assessing the surface state of materials after fracture was evaluated by comparing OCT images with images generated using an established method for such investigations, scanning electron microscopy (SEM). Analysis of cause of fracture is essential in response to damage of machinery parts during various accidents. Currently the analysis is performed using SEM, on samples removed from the metallic parts, while OCT would allow in situ imaging using mobile units. To the best of our knowledge, this is the first time that the OCT capability to replace SEM has been demonstrated. SEM is a more costly and time-consuming method to use in the investigation of surfaces of microstructures of metallic materials.

14.
Opt Express ; 21(16): 19324-38, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23938849

RESUMEN

Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.


Asunto(s)
Imagenología Tridimensional/métodos , Interferometría/métodos , Tomografía de Coherencia Óptica/métodos , Análisis de Fourier , Humanos , Nervio Óptico/anatomía & histología , Pulgar/anatomía & histología , Factores de Tiempo
15.
Biomed Opt Express ; 14(12): 6493-6508, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420314

RESUMEN

This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.

16.
Opt Express ; 20(16): 17522-38, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23038305

RESUMEN

A Fourier domain optical coherence tomography system with two spectrometers in balance detection is assembled using each an InGaAs linear camera. Conditions and adjustments of spectrometer parameters are presented to ensure anti-phase channeled spectrum modulation across the two cameras for a majority of wavelengths within the optical source spectrum. By blocking the signal to one of the spectrometers, the setup was used to compare the conditions of operation of a single camera with that of a balanced configuration. Using multiple layer samples, balanced detection technique is compared with techniques applied to conventional single camera setups, based on sequential deduction of averaged spectra collected with different on/off settings for the sample or reference beams. In terms of reducing the autocorrelation terms and fixed pattern noise, it is concluded that balance detection performs better than single camera techniques, is more tolerant to movement, exhibits longer term stability and can operate dynamically in real time. The cameras used exhibit larger saturation power than the power threshold where excess photon noise exceeds shot noise. Therefore, conditions to adjust the two cameras to reduce the noise when used in a balanced configuration are presented. It is shown that balance detection can reduce the noise in real time operation, in comparison with single camera configurations. However, simple deduction of an average spectrum in single camera configurations delivers less noise than the balance detection.

17.
Opt Express ; 20(5): 5368-83, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22418344

RESUMEN

In this paper we show how to advantageously combine two effects to enhance the sensitivity with depth in Fourier domain (FD) optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by routing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By adjusting the lateral gap between the two beams in their way towards the spectrometer, the position for the maximum of contrast variation of spectral modulation versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a compound image is formed by stitching together the parts of the five images that exhibited maximum brightness. The smaller the diameters of the two beams, the narrower the visibility profile versus depth in Talbot bands, which brings advantages in terms of mirror terms attenuation. However, this leads to a larger spot on the linear camera, which introduces losses, therefore the combined procedure, TB/GF is investigated for four different values of the beam diameters of the two beams. Future cameras with larger pixel size may take full advantage of the TB/GF procedure proposed here.


Asunto(s)
Algoritmos , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Interferometría/instrumentación , Técnica de Sustracción , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Opt Express ; 20(28): 29196-209, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23388745

RESUMEN

Multiple path optical coherence tomography using re-circulating loops has previously been presented as a means of simultaneously acquiring images from multiple depths in multiple imaging channels. The configurations reported so far present the drawback that the strength of the signal from one channel to the next, reduced as the number of circulations increased. A decay of signal of not better than 4 dB from one channel to the next was reported. We present a technique to reduce this attenuation by using polarization maintaining fiber, and modulation of the drive current of the semiconductor optical amplifiers contained in each arm. The effect of these improvements resulted in a decay less than 20 dB from the 1st channel to the 10th channel.

19.
Biomed Opt Express ; 13(2): 761-776, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284172

RESUMEN

Forward-viewing endoscopic optical coherence tomography (OCT) provides 3D imaging in vivo, and can be combined with widefield fluorescence imaging by use of a double-clad fiber. However, it is technically challenging to build a high-performance miniaturized 2D scanning system with a large field-of-view. In this paper we demonstrate how a 1D scanning probe, which produces cross-sectional OCT images (B-scans) and 1D fluorescence T-scans, can be transformed into a 2D scanning probe by manual scanning along the second axis. OCT volumes are assembled from the B-scans using speckle decorrelation measurements to estimate the out-of-plane motion along the manual scan direction. Motion within the plane of the B-scans is corrected using image registration by normalized cross correlation. En-face OCT slices and fluorescence images, corrected for probe motion in 3D, can be displayed in real-time during the scan. For a B-scan frame rate of 250 Hz, and an OCT lateral resolution of approximately 20 µ m , the approach can handle out-of-plane motion at speeds of up to 4 mm/s.

20.
Sci Rep ; 12(1): 10590, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732808

RESUMEN

In this study, for the first time, a Photoacoustic Microscopy instrument driven by a single optical source operating over a wide spectral range (475-2400 nm), covering slightly more than two octaves is demonstrated. Xenopus laevis tadpoles were imaged in vivo using the whole spectral range of 2000 nm of a supercontinuum optical source, and a novel technique of mapping absorbers is also demonstrated, based on the supposition that only one chromophore contributes to the photoacoustic signal of each individual voxel in the 3D photoacoustic image. By using a narrow spectral window (of 25 nm bandwidth) within the broad spectrum of the supercontinuum source at a time, in vivo hyper-spectral Photoacoustic images of tadpoles are obtained. By post-processing pairs of images obtained using different spectral windows, maps of five endogenous contrast agents (hemoglobin, melanin, collagen, glucose and lipids) are produced.


Asunto(s)
Microscopía , Técnicas Fotoacústicas , Imagenología Tridimensional , Microscopía/métodos , Técnicas Fotoacústicas/métodos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA