Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878027

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Imitación Molecular , Péptidos , Animales , Autoanticuerpos/inmunología , Bacteroidetes , Linfocitos T CD8-positivos , Niño , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Insulina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Péptidos/química
2.
Leukemia ; 37(2): 370-378, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36309559

RESUMEN

In acute myeloid leukemia (AML), p53 tumor suppressor activity can be reduced due to enhanced expression of MDM2 which promotes the degradation of p53. In TP53 wild-type malignancies, therapy with small molecule antagonists of MDM2 results in antileukemic activity. Current treatment strategies, however, have been limited by poor tolerability and incomplete clinical activity. We have developed a proteolysis-targeting chimera (PROTAC) MS3227 that targets MDM2 by recruiting the E3 ligase Von Hippel-Lindau, resulting in proteasome-dependent degradation of MDM2. In WT TP53 leukemia cell lines, MS3227 led to activation of p53 targets p21, PUMA, and MDM2 and resulted in cell-cycle arrest, apoptosis, and decreased viability. The catalytic PROTAC MS3227 led to more potent activation when compared to a stoichiometric inhibitor, in part by dampening the negative feedback mechanism in the p53 - MDM2 circuit. The effectiveness of MS3227 was also observed in primary patient specimens with selectivity towards leukemic blasts. The addition of MS3227 enhanced the activity of other anti-leukemic agents including azacytidine, cytarabine, and venetoclax. In particular, MS3227 treatment was shown to downregulate MCL-1, a known mediator of resistance to venetoclax. A PROTAC-based approach may provide a means of improving MDM2 inhibition to gain greater therapeutic potential in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Apoptosis , Línea Celular Tumoral
3.
Hemasphere ; 5(4): e549, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33718803

RESUMEN

Hypomethylating agents (HMAs) in combination with venetoclax have been widely adopted as the standard of care for patients who cannot tolerate induction chemotherapy and for patients who have relapsed/refractory (R/R) acute myeloid leukemia (AML). This study retrospectively analyzed the outcomes of all patients with AML (n = 65) or myelodysplastic syndrome (n = 7) who received the combination of HMA and venetoclax at our institution. Outcomes measured included complete remission (CR) and CR with incomplete hematologic recovery (CRi) rates, duration of response (DOR), and overall survival (OS). Patient mutational profiles and transfusion requirements were also assessed. Of 26 newly diagnosed AML patients, the CR/CRi rate was 53.8%. The median DOR and OS were 6.9 months and not reached, respectively. Of 39 R/R AML patients, the CR/CRi rate was 38.5%. The median DOR and OS were both 8.1 months. Responders to HMA and venetoclax were enriched for TET2, IDH1, and IDH2 mutations, while nonresponders were associated with FLT3 and RAS mutations. Adaptive resistance was observed through various mechanisms including acquired RAS pathway mutations. Of transfusion-dependent patients, 12.2% and 15.2% achieved red blood cell (RBC) and platelet transfusion independence, respectively, while 44.8% and 35.1% of RBC and platelet transfusion independent patients, respectively, became transfusion dependent. In total 59.1% of patients developed a ≥grade 3 infection and 46.5% neutropenic fever. HMA + venetoclax can lead to impressive response rates with moderately durable remissions and survival. However, the benefits of this combination are diminished by the significant toxicities from infection, persistent cytopenias, and transfusion requirements.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32174888

RESUMEN

Type 1 Diabetes (T1D) is regarded as an autoimmune disease characterized by insulin deficiency resulting from destruction of pancreatic ß-cells. The incidence rates of T1D have increased worldwide. Over the past decades, progress has been made in understanding the complexity of the immune response and its role in T1D pathogenesis, however, the trigger of T1D autoimmunity remains unclear. The increasing incidence rates, immigrant studies, and twin studies suggest that environmental factors play an important role and the trigger cannot simply be explained by genetic predisposition. Several research initiatives have identified environmental factors that potentially contribute to the onset of T1D autoimmunity and the progression of disease in children/young adults. More recently, the interplay between gut microbiota and the immune system has been implicated as an important factor in T1D pathogenesis. Although results often vary between studies, broad compositional and diversity patterns have emerged from both longitudinal and cross-sectional human studies. T1D patients have a less diverse gut microbiota, an increased prevalence of Bacteriodetes taxa and an aberrant metabolomic profile compared to healthy controls. In this comprehensive review, we present the data obtained from both animal and human studies focusing on the large longitudinal human studies. These studies are particularly valuable in elucidating the environmental factors that lead to aberrant gut microbiota composition and potentially contribute to T1D. We also discuss how environmental factors, such as birth mode, diet, and antibiotic use modulate gut microbiota and how this potentially contributes to T1D. In the final section, we focus on existing recent literature on microbiota-produced metabolites, proteins, and gut virome function as potential protectants or triggers of T1D onset. Overall, current results indicate that higher levels of diversity along with the presence of beneficial microbes and the resulting microbial-produced metabolites can act as protectors against T1D onset. However, the specifics of the interplay between host and microbes are yet to be discovered.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Microbioma Gastrointestinal , Predisposición Genética a la Enfermedad , Sistema Inmunológico/inmunología , Animales , Diabetes Mellitus Tipo 1/etiología , Humanos
6.
J Clin Invest ; 128(4): 1371-1383, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29480819

RESUMEN

Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases.


Asunto(s)
Neoplasias de la Mama , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Regulación Neoplásica de la Expresión Génica , ARN Neoplásico , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Adulto , Anciano , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA