Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bull Math Biol ; 81(10): 3722-3731, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31338741

RESUMEN

The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735-1741, 1977; Norton in Can Res 48:7067-7071, 1988; Hahnfeldt et al. in Can Res 59:4770-4775, 1999; Anderson et al. in Comput Math Methods Med 2:129-154, 2000. https://doi.org/10.1080/10273660008833042 ; Michor et al. in Nature 435:1267-1270, 2005. https://doi.org/10.1038/nature03669 ; Anderson et al. in Cell 127:905-915, 2006. https://doi.org/10.1016/j.cell.2006.09.042 ; Benzekry et al. in PLoS Comput Biol 10:e1003800, 2014. https://doi.org/10.1371/journal.pcbi.1003800 ). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to.


Asunto(s)
Oncología Médica/tendencias , Modelos Biológicos , Neoplasias/terapia , Simulación por Computador , Humanos , Conceptos Matemáticos , Oncología Médica/estadística & datos numéricos , Edición/estadística & datos numéricos , Edición/tendencias , Investigación Biomédica Traslacional/estadística & datos numéricos , Investigación Biomédica Traslacional/tendencias
2.
J Math Biol ; 79(3): 987-1014, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152210

RESUMEN

This study develops non-pulsatile and pulsatile models for the prediction of blood flow and pressure during head-up tilt. This test is used to diagnose potential pathologies within the autonomic control system, which acts to keep the cardiovascular system at homeostasis. We show that mathematical modeling can be used to predict changes in cardiac contractility, vascular resistance, and arterial compliance, quantities that cannot be measured but are useful to assess the system's state. These quantities are predicted as time-varying parameters modeled using piecewise linear splines. Having models with various levels of complexity formulated with a common set of parameters, allows us to combine long-term non-pulsatile simulations with pulsatile simulations on a shorter time-scale. We illustrate results for a representative subject tilted head-up from a supine position to a [Formula: see text] angle. The tilt is maintained for 5 min before the subject is tilted back down. Results show that if volume data is available for all vascular compartments three parameters can be identified, cardiovascular resistance, vascular compliance, and ventricular contractility, whereas if model predictions are made against arterial pressure and cardiac output data alone, only two parameters can be estimated either resistance and contractility or resistance and compliance.


Asunto(s)
Presión Sanguínea , Gasto Cardíaco/fisiología , Hemodinámica , Modelos Cardiovasculares , Flujo Pulsátil , Posición Supina , Resistencia Vascular/fisiología , Adulto , Frecuencia Cardíaca , Humanos , Masculino , Pruebas de Mesa Inclinada
4.
Int J Radiat Biol ; 95(10): 1421-1426, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30831050

RESUMEN

Purpose: Radiotherapy prescription dose and dose fractionation protocols vary little between individual patients having the same tumor grade and stage. To personalize radiotherapy a predictive model is needed to simulate radiation response. Previous modeling attempts with multiple variables and parameters have been shown to yield excellent data fits at the cost of non-identifiability and clinically unrealistic results. Materials and methods: We develop a mathematical model based on a proliferation saturation index (PSI) that is a measurement of pre-treatment tumor volume-to-carrying capacity ratio that modulates intrinsic tumor growth and radiation response rates. In an adaptive Bayesian approach, we utilize an increasing number of data points for individual patients to predict patient-specific responses to subsequent radiation doses. Results: Model analysis shows that using PSI as the only patient-specific parameter, model simulations can fit longitudinal clinical data with high accuracy (R2=0.84). By analyzing tumor response to radiation using daily CT scans early in the treatment, response to the remaining treatment fractions can be predicted after two weeks with high accuracy (c-index = 0.89). Conclusion: The PSI model may be suited to forecast treatment response for individual patients and offers actionable decision points for mid-treatment protocol adaptation. The presented work provides an actionable image-derived biomarker prior to and during therapy to personalize and adapt radiotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia/métodos , Algoritmos , Teorema de Bayes , Biomarcadores , Proliferación Celular , Fraccionamiento de la Dosis de Radiación , Humanos , Modelos Teóricos , Dosis de Radiación , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA