Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Neural Syst ; 9(3): 257-64, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10560766

RESUMEN

The use of a linguistic representation for expressing knowledge acquired by learning systems is an important issue as regards to user understanding. Under this assumption, and to make sure that these systems will be welcome and used, several techniques have been developed by the artificial intelligence community, under both the symbolic and the connectionist approaches. This work discusses and investigates three knowledge extraction techniques based on these approaches. The first two techniques, the C4.5 and CN2 symbolic learning algorithms, extract knowledge directly from the data set. The last technique, the TREPAN algorithm extracts knowledge from a previously trained neural network. The CN2 algorithm induces if...then rules from a given data set. The C4.5 algorithm extracts decision trees, although it can also extract ordered rules, from the data set. Decision trees are also the knowledge representation used by the TREPAN algorithm.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Árboles de Decisión , Lingüística , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA