Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(5): 549-565, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506705

RESUMEN

SIGNIFICANCE STATEMENT: The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND: The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS: Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS: We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS: In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Células Endoteliales , Daño por Reperfusión , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Ratones , Células Endoteliales/metabolismo , Riñón/patología , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología
2.
Curr Opin Hematol ; 29(3): 156-165, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220321

RESUMEN

PURPOSE OF REVIEW: The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS: Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY: Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.


Asunto(s)
Enfermedades Cardiovasculares , Vasos Linfáticos , Células Endoteliales , Corazón/fisiología , Humanos , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología
3.
Arterioscler Thromb Vasc Biol ; 40(7): 1722-1737, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404007

RESUMEN

OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Terapia Genética , Linfangiogénesis , Vasos Linfáticos/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Interferón gamma/metabolismo , Vasos Linfáticos/inmunología , Vasos Linfáticos/fisiopatología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Ratas Wistar , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Función Ventricular Izquierda
4.
Basic Res Cardiol ; 115(4): 39, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451732

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by diastolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key pathological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.


Asunto(s)
Endotelio Vascular/patología , Insuficiencia Cardíaca/fisiopatología , Vasos Linfáticos/patología , Envejecimiento/patología , Animales , Diabetes Mellitus Tipo 2/complicaciones , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertensión/complicaciones , Microvasos/patología , Obesidad/complicaciones
7.
Circulation ; 133(15): 1484-97; discussion 1497, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26933083

RESUMEN

BACKGROUND: The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI. METHODS AND RESULTS: We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated. CONCLUSIONS: We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.


Asunto(s)
Edema/prevención & control , Linfangiogénesis/efectos de los fármacos , Infarto del Miocardio/terapia , Factor C de Crecimiento Endotelial Vascular/uso terapéutico , Receptor 3 de Factores de Crecimiento Endotelial Vascular/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fibrosis , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Imagenología Tridimensional , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/fisiopatología , Linfografía , Masculino , Infarto del Miocardio/complicaciones , Miocardio/química , Miocardio/patología , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/análisis , Factor C de Crecimiento Endotelial Vascular/análisis , Factor C de Crecimiento Endotelial Vascular/farmacología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/análisis
8.
Angiogenesis ; 18(2): 191-200, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25537851

RESUMEN

Therapeutic angiogenesis has yet to fulfill its promise for the clinical treatment of ischemic diseases. Given the impact of macrophages during pathophysiological angiogenesis, we asked whether macrophages may similarly modulate vascular responses to targeted angiogenic therapies. Mouse matrigel plug assay and rat myocardial infarction (MI) model were used to assess angiogenic therapy with either VEGF-A or FGF-2 with HGF (F+H) delivered locally via albumin-alginate microcapsules. The infiltration of classical M1-type and alternative M2-like macrophages was assessed. Clodronate was used to prevent macrophage recruitment, and the VEGFR2 blocking antibody, DC101, to prevent VEGF-A signaling. At 3 weeks after matrigel implantation, the combination therapy (F+H) led to increased total, and specifically M2-like, macrophage infiltration versus control and VEGF-A plugs, correlating with the angiogenic response. In contrast, VEGF-A preferential recruited M1-type macrophages. In agreement with a direct role of M2-like macrophages in F+H-induced vessel growth, clodronate radically decreased angiogenesis. Further, DC101 reduced F+H-induced angiogenesis, without altering macrophage infiltration, revealing macrophage-derived VEGF-A as a crucial determinant of tissue responsiveness. Similarly, increased cardiac M2-like macrophage infiltration was found following F+H therapy post-MI, with strong correlation between macrophage levels and angiogenic and arteriogenic responses. In conclusion, M2-like macrophages play a decisive role, linked to VEGF-A production, in regulation of tissue responsiveness to angiogenic therapies including the combination of F+H. Our data suggest that future attempts at therapeutic revascularization in ischemic patients might benefit from coupling targeted growth factor delivery with either direct or indirect approaches to recruit pro-angiogenic macrophages in order to maximize therapeutic angiogenic/arteriogenic responses.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Factor de Crecimiento de Hepatocito/uso terapéutico , Macrófagos/efectos de los fármacos , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento de Hepatocito/farmacología , Masculino , Ratones , Ratas , Ratas Wistar
9.
FASEB J ; 28(8): 3351-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24760754

RESUMEN

The protein tyrosine phosphatase 1B (PTP1B) modulates tyrosine kinase receptors, among which is the vascular endothelial growth factor receptor type 2 (VEGFR2), a key component of angiogenesis. Because PTP1B deficiency in mice improves left ventricular (LV) function 2 mo after myocardial infarction (MI), we hypothesized that enhanced angiogenesis early after MI via activated VEGFR2 contributes to this improvement. At 3 d after MI, capillary density was increased at the infarct border of PTP1B(-/-) mice [+7±2% vs. wild-type (WT), P = 0.05]. This was associated with increased extracellular signal-regulated kinase 2 phosphorylation and VEGFR2 activation (i.e., phosphorylated-Src/Src/VEGFR2 and dissociation of endothelial VEGFR2/VE-cadherin), together with higher infiltration of proangiogenic M2 macrophages within unchanged overall infiltration. In vitro, we showed that PTP1B inhibition or silencing using RNA interference increased VEGF-induced migration and proliferation of mouse heart microvascular endothelial cells as well as fibroblast growth factor (FGF)-induced proliferation of rat aortic smooth muscle cells. At 8 d after MI in PTP1B(-/-) mice, increased LV capillary density (+21±3% vs. WT; P<0.05) and an increased number of small diameter arteries (15-50 µm) were likely to participate in increased LV perfusion assessed by magnetic resonance imaging and improved LV compliance, indicating reduced diastolic dysfunction. In conclusion, PTP1B deficiency reduces MI-induced heart failure promptly after ischemia by enhancing angiogenesis, myocardial perfusion, and diastolic function.


Asunto(s)
Circulación Coronaria/fisiología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Aorta , Arteriolas/fisiopatología , Capilares/fisiopatología , Cardiotónicos/farmacología , División Celular , Movimiento Celular , Células Cultivadas , Diástole , Células Endoteliales/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Terapia Molecular Dirigida , Infarto del Miocardio/complicaciones , Infarto del Miocardio/enzimología , Miocitos del Músculo Liso/citología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Interferencia de ARN , Ratas , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
10.
Nat Commun ; 14(1): 4461, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491334

RESUMEN

Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.


Asunto(s)
Monocitos , Infarto del Miocardio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Epigénesis Genética , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo
11.
Cardiovasc Res ; 119(2): 492-505, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35689481

RESUMEN

AIMS: Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphangiogenesis in non-ischaemic cardiomyopathy following pressure-overload remains to be determined. Here, we investigated cardiac lymphangiogenesis following transversal aortic constriction (TAC) in C57Bl/6 and Balb/c mice, and in end-stage HF patients. METHODS AND RESULTS: Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, oedema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice. We found that VEGFR3-signalling was essential to prevent cardiac lymphatic rarefaction after TAC in C57Bl/6 mice. While anti-VEGFR3-induced lymphatic rarefaction did not significantly aggravate myocardial oedema post-TAC, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, whereas inhibition of lymphangiogenesis did not aggravate interstitial fibrosis, it increased perivascular fibrosis and accelerated development of left ventricular (LV) dilation and dysfunction. In clinical HF samples, cardiac lymphatic density tended to increase, although lymphatic sizes decreased, notably in patients with dilated cardiomyopathy. Similarly, comparing C57Bl/6 and Balb/c mice, lymphatic remodelling post-TAC was linked to LV dilation rather than to hypertrophy. The striking lymphangiogenesis in Balb/c was associated with reduced cardiac levels of macrophages, B cells, and perivascular fibrosis at 8 weeks post-TAC, as compared with C57Bl/6 mice that displayed weak lymphangiogenesis. Surprisingly, however, it did not suffice to resolve myocardial oedema, nor prevent HF development. CONCLUSIONS: We demonstrate for the first time that endogenous lymphangiogenesis limits TAC-induced cardiac inflammation and perivascular fibrosis, delaying HF development in C57Bl/6 but not in Balb/c mice. While the functional impact of lymphatic remodelling remains to be determined in HF patients, our findings suggest that under settings of pressure-overload poor cardiac lymphangiogenesis may accelerate HF development.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Ratones , Animales , Linfangiogénesis , Corazón , Insuficiencia Cardíaca/metabolismo , Edema , Fibrosis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Remodelación Ventricular
12.
Circulation ; 124(9): 1059-69, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21824923

RESUMEN

BACKGROUND: Therapeutic angiogenesis is a promising approach for the treatment of cardiovascular diseases, including myocardial infarction and chronic heart failure. We aimed to improve proangiogenic therapies by identifying novel arteriogenic growth factor combinations, developing injectable delivery systems for spatiotemporally controlled growth factor release, and evaluating functional consequences of targeted intramyocardial growth factor delivery in chronic heart failure. METHODS AND RESULTS: First, we observed that fibroblast growth factor and hepatocyte growth factor synergistically stimulate vascular cell migration and proliferation in vitro. Using 2 in vivo angiogenesis assays (n=5 mice per group), we found that the growth factor combination results in a more potent and durable angiogenic response than either growth factor used alone. Furthermore, we determined that the molecular mechanisms involve potentiation of Akt and mitogen-activated protein kinase signal transduction pathways, as well as upregulation of angiogenic growth factor receptors. Next, we developed crosslinked albumin-alginate microcapsules that sequentially release fibroblast growth factor-2 and hepatocyte growth factor. Finally, in a rat model of chronic heart failure induced by coronary ligation (n=14 to 15 rats per group), we found that intramyocardial slow release of fibroblast growth factor-2 with hepatocyte growth factor potently stimulates angiogenesis and arteriogenesis and prevents cardiac hypertrophy and fibrosis, as determined by immunohistochemistry, leading to improved cardiac perfusion after 3 months, as shown by magnetic resonance imaging. These multiple beneficial effects resulted in reduced adverse cardiac remodeling and improved left ventricular function, as revealed by echocardiography. CONCLUSION: Our data showing the selective advantage of using fibroblast growth factor-2 together with hepatocyte growth factor suggest that this growth factor combination may constitute an efficient novel treatment for chronic heart failure.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Insuficiencia Cardíaca/prevención & control , Factor de Crecimiento de Hepatocito/administración & dosificación , Miocardio , Neovascularización Fisiológica/efectos de los fármacos , Animales , Cápsulas , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enfermedad Crónica , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Quimioterapia Combinada , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Ratas , Ratas Wistar
13.
J Surg Res ; 176(2): 657-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22341036

RESUMEN

OBJECTIVE: Vascular rejection after organ transplantation is characterized by an arterial occlusive lesion, resulting from intimal proliferation occurring in response to arterial wall immune aggression. Our hypothesis is that an early endothelial repair may prevent vascular graft rejection. The aim of the current study was to compare different pharmacologic progenitor cell mobilizing treatments for their protective effects against vascular rejection. METHODS AND RESULTS: Aortic transplants were made from balb/c donor to C57Bl/6 recipient mice. Three different mobilizing pharmacologic agents were used: low molecular weight fucoidan (LMWF), simvastatin, and AMD3100. The circulating levels of progenitor cells were found to be increased by all three treatments, as determined by flow cytometry. For each treatment, the design was: treated allografts, nontreated allografts, treated isografts, and nontreated isografts. After 21 d, morphometric and immunohistochemical analyses were performed. We found that the three treatments significantly reduced intimal proliferation, compared with nontreated allografts. This was associated with intimal re-endothelialization of the grafts. Further, in chimeric mice that had previously received GFP-transgenic bone marrow transplantation, GFP-positive cells were found in the vascular allograft intima, indicating that re-endothelialization was, at least partly, due to the recruitment of bone marrow-derived, presumably endothelial progenitor circulating cells. CONCLUSIONS: In this aortic allograft model, three different mobilizing treatments were found to partially prevent vascular transplant rejection. Bone marrow-derived progenitor cells mobilized by the three treatments may play a direct role in the endothelial repair process and in the suppression of intimal proliferation.


Asunto(s)
Aorta/trasplante , Arteriosclerosis/prevención & control , Rechazo de Injerto/prevención & control , Movilización de Célula Madre Hematopoyética/métodos , Células Madre Hematopoyéticas/citología , Animales , Fármacos Anti-VIH/farmacología , Anticolesterolemiantes/farmacología , Anticoagulantes/química , Anticoagulantes/farmacología , Bencilaminas , Ciclamas , Endotelio Vascular/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Compuestos Heterocíclicos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Peso Molecular , Polisacáridos/química , Polisacáridos/farmacología , Simvastatina/farmacología , Trasplante Homólogo , Túnica Íntima/efectos de los fármacos
14.
J Cardiovasc Pharmacol ; 59(3): 260-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22075752

RESUMEN

AIMS: Enhanced heart rate (HR) is a compensatory mechanism in chronic heart failure (CHF), preserving cardiac output, but at the cost of increased left ventricular (LV) oxygen consumption and impaired diastolic function. The HR reduction (HRR) induced by the If current inhibitor ivabradine prevents LV systolic dysfunction in CHF, but whether HRR improves LV diastolic function is unknown. METHODS: LV diastolic function and remodeling were assessed in rats with CHF after coronary ligation after long-term (90 days, starting 7 days after ligation) and delayed short-term (4 days, starting 93 days after ligation) ivabradine treatment (10 mg·kg·d). RESULTS: Long- and short-term HRR reduced LV end-diastolic pressure, LV relaxation, and LV end-diastolic pressure-volume relation. Simultaneously, LV hypoxia-inducible factor-1α expression was reduced. Long-term and, to a more marked extent, short-term HRR increased endothelial cell proliferation, associated after long-term HRR with the prevention of CHF-related LV capillary rarefaction. Long-term and, to a lesser extent, short-term HRR increased endothelial nitric oxide synthase expression, associated after long-term HRR with improved nitric oxide-dependent coronary vasodilatation. CONCLUSIONS: Long-term HRR induced by ivabradine improves diastolic LV function probably involving attenuated hypoxia, reduced remodeling, and/or preserved nitric oxide bioavailability, resulting from processes triggered early after HRR initiation: angiogenesis and/or preservation of endothelial nitric oxide synthase expression.


Asunto(s)
Benzazepinas/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Benzazepinas/administración & dosificación , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diástole , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ivabradina , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/patología
16.
Nat Med ; 9(5): 604-13, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12669032

RESUMEN

The establishment of functional and stable vascular networks is essential for angiogenic therapy. Here we report that a combination of two angiogenic factors, platelet-derived growth factor (PDGF)-BB and fibroblast growth factor (FGF)-2, synergistically induces vascular networks, which remain stable for more than a year even after depletion of angiogenic factors. In both rat and rabbit ischemic hind limb models, PDGF-BB and FGF-2 together markedly stimulated collateral arteriogenesis after ligation of the femoral artery, with a significant increase in vascularization and improvement in paw blood flow. A possible mechanism of angiogenic synergism between PDGF-BB and FGF-2 involves upregulation of the expression of PDGF receptor (PDGFR)-alpha and PDGFR-beta by FGF-2 in newly formed blood vessels. Our data show that a specific combination of angiogenic factors establishes functional and stable vascular networks, and provides guidance for the ongoing clinical trials of angiogenic factors for the treatment of ischemic diseases.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Miembro Posterior/irrigación sanguínea , Isquemia/tratamiento farmacológico , Factor de Crecimiento Derivado de Plaquetas/farmacología , Animales , Becaplermina , Circulación Colateral/efectos de los fármacos , Sinergismo Farmacológico , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis , Conejos , Ratas , Receptores del Factor de Crecimiento Derivado de Plaquetas/biosíntesis
17.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34651583

RESUMEN

Cardiac lymphatics have emerged as a therapeutic target in cardiovascular diseases to limit myocardial edema and inflammation, notably after myocardial infarction (MI). While most experimental therapeutic approaches have focused on vascular endothelial growth factor C (VEGF-C) delivery, it remains uncertain to what degree the beneficial cardiac effects are related to lymphatic expansion in the heart. In this issue of the JCI, Keller, Lim, et al. reexamined the acute functional impact of endogenous cardiac lymphangiogenesis in the infarct zone after MI in mice. Their data, obtained by elegant comparisons of several complementary genetic mouse models, indicate that infarct expansion and left ventricular dilation and function after MI are unaffected by infarct lymphangiogenesis. This Commentary places the results into the context of previous findings. We believe these data will help further advance the research field of cardiac lymphatics to guide better clinical translation and benefit patients with ischemic heart disease.


Asunto(s)
Vasos Linfáticos , Infarto del Miocardio , Animales , Corazón , Humanos , Linfangiogénesis , Ratones , Factor C de Crecimiento Endotelial Vascular
18.
Trends Cardiovasc Med ; 31(6): 333-338, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592746

RESUMEN

Here we describe various techniques for visualization of the lymphatic vasculature, particularly in the heart. Addressing macro-, microscopic, and molecular levels of lymphatic organization, we give examples of how to explore the roles of specific antigens/markers expressed in lymphatic vessels and their extracellular matrix as structural and functional elements involved in various biological functions of lymphatics. Some obstacles and technical challenges related to lymphatic visualization are also discussed.


Asunto(s)
Técnicas de Imagen Cardíaca , Cardiopatías/diagnóstico por imagen , Corazón/diagnóstico por imagen , Enfermedades Linfáticas/diagnóstico por imagen , Sistema Linfático/diagnóstico por imagen , Linfografía , Microscopía , Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Glicocálix/metabolismo , Glicocálix/patología , Corazón/fisiopatología , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Enfermedades Linfáticas/metabolismo , Enfermedades Linfáticas/patología , Enfermedades Linfáticas/fisiopatología , Sistema Linfático/metabolismo , Sistema Linfático/patología , Sistema Linfático/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Valor Predictivo de las Pruebas , Pronóstico
19.
ESC Heart Fail ; 8(2): 1085-1095, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33471946

RESUMEN

AIMS: Acute decompensated heart failure (ADHF), a live-threatening complication of heart failure (HF), associates a further decrease of the already by HF-impaired cardiac function with an increase in heart rate. We evaluated, using a new model of ADHF, whether heart rate reduction (HRR) opposes the acute decompensation-related aggravation of cardiovascular dysfunction. METHODS AND RESULTS: Cardiac output (echocardiography), cardiac tissue perfusion (magnetic resonance imaging), pulmonary wet weight, and in vitro coronary artery relaxation (Mulvany) were assessed 1 and 14 days after acute decompensation induced by salt-loading (1.8 g/kg, PO) in rats with well-established HF due to coronary ligation. HRR was induced by administration of the If current inhibitor S38844, 12 mg/kg PO twice daily for 2.5 days initiated 12 h or 6 days after salt-loading (early or delayed treatment, respectively). After 24 h, salt-loading resulted in acute decompensation, characterized by a reduction in cardiac output (HF: 130 ± 5 mL/min, ADHF: 105 ±  8 mL/min; P < 0.01), associated with a decreased myocardial perfusion (HF: 6.41 ± 0.53 mL/min/g, ADHF: 4.20 ± 0.11 mL/min/g; P < 0.01), a slight increase in pulmonary weight (HF: 1.68 ± 0.09 g, ADHF: 1.81 ± 0.15 g), and impaired coronary relaxation (HF: 55 ± 1% of pre-contraction at acetylcholine 4.5 10-5  M, ADHF: 27 ± 7 %; P < 0.01). Fourteen days after salt-loading, cardiac output only partially recovered (117 ± 5 mL/min; P < 0.05), while myocardial tissue perfusion (4.51 ± 0.44 mL/min; P < 0.01) and coronary relaxation (28 ± 4%; P < 0.01) remained impaired, but pulmonary weight further increased (2.06 ± 0.15 g, P < 0.05). Compared with untreated ADHF, HRR induced by S38844 improved cardiac output (125 ± 1 mL/min; P < 0.05), myocardial tissue perfusion (6.46 ± 0.42 mL/min/g; P < 0.01), and coronary relaxation (79 ± 2%; P < 0.01) as soon as 12 h after S38844 administration. These effects persisted beyond S38844 administration, illustrated by the improvements in cardiac output (130 ± 6 mL/min; P < 0.05), myocardial tissue perfusion (6.38 ± 0.48 mL/min/g; P < 0.01), and coronary relaxation (71 ± 4%; P < 0.01) at Day 14. S38844 did not modify pulmonary weight at Day 1 (1.78 ± 0.04 g) but tended to decrease pulmonary weight at Day 14 (1.80 ± 0.18 g). While delayed HRR induced by S38844 never improved cardiac function, early HRR rendered less prone to a second acute decompensation. CONCLUSIONS: In a model mimicking human ADHF, early, but not delayed, transient HRR induced by the If current inhibitor S38844 opposes acute decompensation by preventing the decompensated-related aggravation of cardiovascular dysfunction as well as the development of pulmonary congestion, and these protective effects persist beyond the transient treatment. Whether early transient HRR induced by If current inhibitors or other bradycardic agents, i.e. beta-blockers, exerts beneficial effects in human ADHF warrants further investigation.


Asunto(s)
Insuficiencia Cardíaca , Animales , Gasto Cardíaco , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Frecuencia Cardíaca , Ventrículos Cardíacos , Ratas
20.
J Clin Invest ; 117(10): 2766-77, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17909625

RESUMEN

Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosarcomas led to the formation of high-density primitive vascular plexuses, which were poorly coated with pericytes and VSMCs. Surprisingly, overexpression of PDGF-BB alone in tumor cells resulted in dissociation of VSMCs from tumor vessels and decreased recruitment of pericytes. In the absence of FGF2, capillary ECs lacked response to PDGF-BB. However, FGF2 triggers PDGFR-alpha and -beta expression at the transcriptional level in ECs, which acquire hyperresponsiveness to PDGF-BB. Similarly, PDGF-BB-treated VSMCs become responsive to FGF2 stimulation via upregulation of FGF receptor 1 (FGFR1) promoter activity. These findings demonstrate that PDGF-BB and FGF2 reciprocally increase their EC and mural cell responses, leading to disorganized neovascularization and metastasis. Our data suggest that intervention of this non-VEGF reciprocal interaction loop for the tumor vasculature could be an important therapeutic target for the treatment of cancer and metastasis.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibrosarcoma/sangre , Fibrosarcoma/patología , Neoplasias Pulmonares/secundario , Neovascularización Patológica/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Becaplermina , Capilares , Movimiento Celular , Proliferación Celular , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibrosarcoma/metabolismo , Humanos , Ratones , Ratones SCID , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neovascularización Patológica/genética , Pericitos/metabolismo , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/farmacología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-sis , Ratas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA