Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35630786

RESUMEN

Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile-composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)-of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.


Asunto(s)
Iridoides , Melanoma , Dacarbazina , Humanos , Iridoides/farmacología , Melanoma/tratamiento farmacológico , Aceite de Oliva/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
2.
J Phys Chem A ; 114(10): 3423-30, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20151699

RESUMEN

The oxidation of ascorbate with the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical in water and water-dioxane mixed solvent has been demonstrated to be a proton-coupled electron transfer (PCET) process, involving hydrogen tunnelling at room temperature. The magnitude of the kinetic isotope effect (KIE) k(H)/k(D) in the reaction increases with decrease of the solvent polarity. The evidence comprise: (a) the spectroscopic and kinetic evidence for the interaction of ascorbate and TEMPO; (b) the observation of KIEs k(H)/k(D) of 24.2(0.6) in water and 31.1(1.1) in 1:1 v/v water-diox. (diox = dioxane), at 298 K; (c) the observation of isotope effect on the Arrhenius prefactor, A(H)/A(D) of 0.6(0.2) in the reaction in water and 1.2(0.2) in 1:1 v/v water-diox solvent; (d) the observation of isotope differences in the enthalpies of activation in water and D(2)O, Delta(r)H(double dagger) (in H(2)O) = 31.0(0.4) kJ/mol, Delta(r)H(double dagger) (in D(2)O) = 40.0 (0.5) kJ/mol; in 1:1 v/v water-diox and 1:1 v/v D(2)O-diox, Delta(r)H(double dagger) (in H(2)O/diox) = 23.9(0.2) kJ/mol, Delta(r)H(double dagger) (in D(2)O/diox) = 32.1(0.3) kJ/mol; (e) the temperature dependence of the KIEs in water and 1:1 v/v water-dioxane; these KIEs range from 27.3 at 285.4 K to 19.1 at 317.4 K in water and from 34.3 to 24.6 at the corresponding temperatures in 1:1 v/v water-diox, respectively; (f) the observation of an increase of the KIE in 10-40% v/v dioxane-water solvents relative to the KIE in water alone. There is a weak solvent dependence of the rate constant on going from water to 1:1 v/v water-diox. solvent, from 2.20(0.03) mol(-1) dm(3) s(-1) to 5.50(0.14) mol(-1) dm(3) s(-1), respectively, which originates from the mutual compensation of the enthalpy and entropy of activation.


Asunto(s)
Ácido Ascórbico/química , Óxidos N-Cíclicos/química , Solventes/química , Deuterio/química , Dioxanos/química , Isótopos , Cinética , Temperatura , Termodinámica , Agua/química
3.
Acta Pharm ; 69(4): 461-482, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639094

RESUMEN

Cancer presents one of the leading causes of death in the world. Current treatment includes the administration of one or more anticancer drugs, commonly known as chemotherapy. The biggest issue concerning the chemotherapeutics is their toxicity on normal cells and persisting side effects. One approach to the issue is chemoprevention and the other one is the discovery of more effective drugs or drug combinations, including combinations with polyphenols. Olive oil polyphenols (OOPs), especially hydroxytyrosol (HTyr), tyrosol (Tyr) and their derivatives oleuropein (Ole), oleacein and oleocanthal (Oc) express anticancer activity on different cancer models. Recent studies report that phenolic extract of virgin olive oil may be more effective than the individual phenolic compounds. Also, there is a growing body of evidence about the combined treatment of OOPs with various anticancer drugs, such as cisplatin, tamoxifen, doxorubicin and others. These novel approaches may present an advanced strategy in the prevention and treatment of cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Aceite de Oliva/uso terapéutico , Polifenoles/uso terapéutico , Antioxidantes/uso terapéutico , Quimioterapia Combinada , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA