Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(21): e111338, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121125

RESUMEN

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Asunto(s)
Pulmón , Factor de Transcripción SOX9 , Células Madre , Humanos , Diferenciación Celular/fisiología , Pulmón/embriología , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo
2.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069896

RESUMEN

In the developing nervous system, neural stem cells (NSCs) use temporal patterning to generate a wide variety of different neuronal subtypes. In Drosophila, the temporal transcription factors, Hunchback, Kruppel, Pdm and Castor, are sequentially expressed by NSCs to regulate temporal identity during neurogenesis. Here, we identify a new temporal transcription factor that regulates the transition from the Pdm to Castor temporal windows. This factor, which we call Chronophage (or 'time-eater'), is homologous to mammalian CTIP1 (Bcl11a) and CTIP2 (Bcl11b). We show that Chronophage binds upstream of the castor gene and regulates its expression. Consistent with Chronophage promoting a temporal switch, chronophage mutants generate an excess of Pdm-specified neurons and are delayed in generating neurons associated with the Castor temporal window. In addition to promoting the Pdm to Castor transition, Chronophage also represses the production of neurons generated during the earlier Hunchback and Kruppel temporal windows. Genetic interactions with Hunchback and Kruppel indicate that Chronophage regulates NSC competence to generate Hunchback- and Kruppel-specified neurons. Taken together, our results suggest that Chronophage has a conserved role in temporal patterning and neuronal subtype specification.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Células-Madre Neurales/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Cell ; 143(7): 1161-73, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183078

RESUMEN

The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Células-Madre Neurales/citología , Animales , Dieta , Drosophila/embriología , Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuroglía/citología , Somatomedinas/metabolismo
4.
PLoS Biol ; 19(11): e3001255, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748544

RESUMEN

The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.


Asunto(s)
Drosophila melanogaster/genética , Estudios de Asociación Genética , Pruebas Genéticas , Obesidad/genética , Edad de Inicio , Animales , Estudios de Casos y Controles , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Homocigoto , Humanos , Masculino , Mutación/genética , Linaje , Transducción de Señal/genética
5.
Cell ; 133(5): 769-71, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510921

RESUMEN

During development, many neural stem cells "age" as they sequentially generate distinct neuronal or glial cell types. In this issue, Maurange et al. (2008) now identify the temporal control factors in Drosophila neural stem cells (neuroblasts) that regulate the fate of stem cell progeny and signal the end of stem cell proliferation.


Asunto(s)
Drosophila melanogaster/citología , Neuronas/citología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Células Madre/metabolismo
6.
J Neurosci ; 41(30): 6430-6448, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34210781

RESUMEN

The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as "brain sparing." However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood-brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood-brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood-brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain.SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Serina Proteasas/metabolismo , Animales , Barrera Hematoencefálica/crecimiento & desarrollo , Drosophila melanogaster , Femenino , Masculino , Desnutrición
7.
Development ; 145(18)2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254066

RESUMEN

Neural stem cells must balance symmetric and asymmetric cell divisions to generate a functioning brain of the correct size. In both the developing Drosophila visual system and mammalian cerebral cortex, symmetrically dividing neuroepithelial cells transform gradually into asymmetrically dividing progenitors that generate neurons and glia. As a result, it has been widely accepted that stem cells in these tissues switch from a symmetric, expansive phase of cell divisions to a later neurogenic phase of cell divisions. In the Drosophila optic lobe, this switch is thought to occur during larval development. However, we have found that neuroepithelial cells start to produce neuroblasts during embryonic development, demonstrating a much earlier role for neuroblasts in the developing visual system. These neuroblasts undergo neurogenic divisions, enter quiescence and are retained post-embryonically, together with neuroepithelial cells. Later in development, neuroepithelial cells undergo further cell divisions before transforming into larval neuroblasts. Our results demonstrate that the optic lobe neuroepithelium gives rise to neurons and glia over 60 h earlier than was thought previously.


Asunto(s)
Drosophila melanogaster/embriología , Células-Madre Neurales/citología , Células Neuroepiteliales/citología , Neurogénesis/fisiología , Lóbulo Óptico de Animales no Mamíferos/citología , Animales , División Celular , Neuroglía/citología , Neuronas/citología
8.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185410

RESUMEN

The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells.


Asunto(s)
Metilación de ADN/genética , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Unión al ADN , Genoma , Células Germinativas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Proteínas de Unión al ARN
9.
Proc Natl Acad Sci U S A ; 115(48): 12218-12223, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30404917

RESUMEN

Epithelial homeostasis requires the precise balance of epithelial stem/progenitor proliferation and differentiation. While many signaling pathways that regulate epithelial stem cells have been identified, it is probable that other regulators remain unidentified. Here, we use gene-expression profiling by targeted DamID to identify the stem/progenitor-specific transcription and signaling factors in the Drosophila midgut. Many signaling pathway components, including ligands of most major pathways, exhibit stem/progenitor-specific expression and have regulatory regions bound by both intrinsic and extrinsic transcription factors. In addition to previously identified stem/progenitor-derived ligands, we show that both the insulin-like factor Ilp6 and TNF ligand eiger are specifically expressed in the stem/progenitors and regulate normal tissue homeostasis. We propose that intestinal stem cells not only integrate multiple signals but also contribute to and regulate the homeostatic signaling microenvironmental niche through the expression of autocrine and paracrine factors.


Asunto(s)
Drosophila/fisiología , Intestinos/citología , Nicho de Células Madre , Células Madre/citología , Animales , Drosophila/citología , Proteínas de Drosophila/metabolismo , Homeostasis , Transducción de Señal , Células Madre/metabolismo
10.
EMBO J ; 33(24): 2983-96, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25433031

RESUMEN

Tissue stem cells divide to self-renew and generate differentiated cells to maintain homeostasis. Although influenced by both intrinsic and extrinsic factors, the genetic mechanisms coordinating the decision between self-renewal and initiation of differentiation remain poorly understood. The escargot (esg) gene encodes a transcription factor that is expressed in stem cells in multiple tissues in Drosophila melanogaster, including intestinal stem cells (ISCs). Here, we demonstrate that Esg plays a pivotal role in intestinal homeostasis, maintaining the stem cell pool while influencing fate decisions through modulation of Notch activity. Loss of esg induced ISC differentiation, a decline in Notch activity in daughter enteroblasts (EB), and an increase in differentiated enteroendocrine (EE) cells. Amun, an inhibitor of Notch in other systems, was identified as a target of Esg in the intestine. Decreased expression of esg resulted in upregulation of Amun, while downregulation of Amun rescued the ectopic EE cell phenotype resulting from loss of esg. Thus, our findings provide a framework for further comparative studies addressing the conserved roles of Snail factors in coordinating self-renewal and differentiation of stem cells across tissues and species.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Animales , ADN Glicosilasas/metabolismo , Tracto Gastrointestinal/fisiología , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Receptores Notch/metabolismo
11.
EMBO J ; 33(24): 2967-82, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25298397

RESUMEN

Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Animales , Tracto Gastrointestinal/fisiología , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica
12.
Neurobiol Dis ; 107: 4-14, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28132930

RESUMEN

Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Envejecimiento/fisiología , Animales , Drosophila melanogaster , Humanos
13.
Bioinformatics ; 31(20): 3371-3, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26112292

RESUMEN

UNLABELLED: DamID is a powerful technique for identifying regions of the genome bound by a DNA-binding (or DNA-associated) protein. Currently, no method exists for automatically processing next-generation sequencing DamID (DamID-seq) data, and the use of DamID-seq datasets with normalization based on read-counts alone can lead to high background and the loss of bound signal. DamID-seq thus presents novel challenges in terms of normalization and background minimization. We describe here damidseq_pipeline, a software pipeline that performs automatic normalization and background reduction on multiple DamID-seq FASTQ datasets. AVAILABILITY AND IMPLEMENTATION: Open-source and freely available from http://owenjm.github.io/damidseq_pipeline. The damidseq_pipeline is implemented in Perl and is compatible with any Unix-based operating system (e.g. Linux, Mac OSX). CONTACT: o.marshall@gurdon.cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Sitios de Unión , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
14.
J Neurosci ; 34(7): 2538-43, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523544

RESUMEN

Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K(+) channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca(2+), the fast K(+) current is carried solely by Sh channels (unlike neurons in which a second fast K(+) current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Canales Iónicos/biosíntesis , Proteínas con Homeodominio LIM/metabolismo , Neurogénesis/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Canales Iónicos/genética , Proteínas con Homeodominio LIM/genética , Neuronas Motoras/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
15.
EMBO J ; 28(24): 3799-807, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19851284

RESUMEN

Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.


Asunto(s)
Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Células Madre/citología , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Diferenciación Celular , Proteínas de Unión al ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo
16.
Development ; 137(18): 2981-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20685734

RESUMEN

The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashion. This cell fate transition is highly reminiscent of the switch from neuroepithelial cells to radial glial cells in the developing mammalian cerebral cortex. To identify the molecules that mediate the transition, we microdissected neuroepithelial cells and compared their transcriptional profile with similarly obtained optic lobe neuroblasts. We find genes encoding members of the Notch pathway expressed in neuroepithelial cells. We show that Notch mutant clones are extruded from the neuroepithelium and undergo premature neurogenesis. A wave of proneural gene expression is thought to regulate the timing of the transition from neuroepithelium to neuroblast. We show that the proneural wave transiently suppresses Notch activity in neuroepithelial cells, and that inhibition of Notch triggers the switch from symmetric, proliferative division, to asymmetric, differentiative division.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , División Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación , Receptores Notch/genética , Transducción de Señal
17.
Development ; 137(5): 705-14, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20147375

RESUMEN

Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation.


Asunto(s)
Proliferación Celular , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/fisiología , Femenino , Intestinos/fisiología , Modelos Biológicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética/fisiología
18.
Mol Cell Proteomics ; 10(5): M110.002188, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20861518

RESUMEN

Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/aislamiento & purificación , Ubiquitinación , Animales , Biotinilación , Proteínas Portadoras/química , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Cromatografía Liquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Peso Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/aislamiento & purificación , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Especificidad de Órganos , Proteoma/química , Proteoma/metabolismo , Proteínas Recombinantes/química , Ubiquitina/química , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
19.
Cell Stem Cell ; 30(1): 20-37.e9, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493780

RESUMEN

Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease.


Asunto(s)
Diferenciación Celular , Pulmón , Organoides , Humanos , Recién Nacido , Células Epiteliales Alveolares/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Pulmón/embriología , Enfermedades Respiratorias/embriología , Enfermedades Respiratorias/metabolismo
20.
Dev Genes Evol ; 222(6): 361-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22945369

RESUMEN

The Rho GTP exchange factor, Pebble (Pbl), long recognised as an essential activator of Rho during cytokinesis, also regulates mesoderm migration at gastrulation. Like other cell cycle components, pbl expression patterns broadly correlate with proliferative tissue. Surprisingly, in spite of its role in the early mesoderm, pbl is downregulated in the presumptive mesoderm before ventral furrow formation. Here, we show that this mesoderm-specific repression of pbl is dependent on the transcriptional repressor Snail (Sna). pbl repression was lost in sna mutants but was unaffected when Sna was ectopically expressed, showing that Sna is necessary, but not sufficient, for pbl repression. Using DamID, the first intron of pbl was identified as a Sna-binding region. Nine sites with the Sna-binding consensus motif CAGGT[GA] were identified in this intron. Mutating these to TAGGC[GA] abolished the ventral repression of pbl. Surprisingly, Sna-dependent repression of pbl was not essential for viability or fertility. Loss of repression did, however, increase the frequency of low-penetrance gastrulation defects. Consistent with this, expression of a pbl-GFP transgene in the presumptive mesoderm generated similar gastrulation defects. Finally, we show that a cluster of Snail-binding sites in the middle of the first intron of pbl orthologues is a conserved feature in the other 11 sequenced Drosophila species. We conclude that pbl levels are precisely regulated to ensure that there is enough protein available for its role in early mesoderm development but not so much as to inhibit the orderly progression of gastrulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila/genética , Embrión no Mamífero/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Transcripción/metabolismo , Animales , Culicidae/embriología , Culicidae/genética , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Gastrulación , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA