Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioessays ; 43(6): e2000256, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33860546

RESUMEN

I hypothesize that the appearance of sex facilitated the merging of the endosymbiont and host genomes during early eukaryote evolution. Eukaryotes were formed by symbiosis between a bacterium that entered an archaeon, eventually giving rise to mitochondria. This entry was followed by the gradual transfer of most bacterial endosymbiont genes into the archaeal host genome. I argue that the merging of the mitochondrial genes into the host genome was vital for the evolution of genuine eukaryotes. At the time this process commenced it was unprecedented and required a novel mechanism. I suggest that this mechanism was meiotic sex, and that its appearance might have been THE crucial step that enabled the evolution of proper eukaryotes from early endosymbiont containing proto-eukaryotes. Sex might continue to be essential today for keeping genome insertions in check. Also see the video abstract here: https://youtu.be/aVMvWMpomac.


Asunto(s)
Evolución Biológica , Eucariontes , Archaea/genética , Eucariontes/genética , Células Eucariotas , Filogenia , Simbiosis/genética
2.
J Cell Sci ; 124(Pt 4): 532-9, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21245198

RESUMEN

Stil (Sil, SCL/TAL1 interrupting locus) is a cytosolic and centrosomal protein expressed in proliferating cells that is required for mouse and zebrafish neural development and is mutated in familial microcephaly. Recently the Drosophila melanogaster ortholog of Stil was found to be important for centriole duplication. Consistent with this finding, we report here that mouse embryonic fibroblasts lacking Stil are characterized by slow growth, low mitotic index and absence of clear centrosomes. We hypothesized that Stil regulates mitosis through the tumor suppressor Chfr, an E3 ligase that blocks mitotic entry in response to mitotic stress. Mouse fibroblasts lacking Stil by genomic or RNA interference approaches, as well as E9.5 Stil(-/-) embryos, express high levels of the Chfr protein and reduced levels of the Chfr substrate Plk1. Exogenous expression of Stil, knockdown of Chfr or overexpression of Plk1 reverse the abnormal mitotic phenotypes of fibroblasts lacking Stil. We further demonstrate that Stil increases Chfr auto-ubiquitination and reduces its protein stability. Thus, Stil is required for centrosome organization, entry into mitosis and cell proliferation, and these functions are at least partially mediated by Chfr and its targets. This is the first identification of a negative regulator of the Chfr mitotic checkpoint.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centrosoma/metabolismo , Regulación hacia Abajo , Mitosis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de la Leucemia Linfocítica T Aguda , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
3.
Biochem Biophys Res Commun ; 408(1): 71-7, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21458414

RESUMEN

Our knowledge concerning the mechanisms of cell cycle regulation in organisms belonging to the Trypanosometidae family is limited. Leishmania donovani are parasitic protozoa that cause kala azar, a fatal form of visceral leishmaniasis in humans. Here we provide evidence that the L. donovani genome contains a Cdc20 homologue. Cdc20 is a regulator of the Anaphase Promoting Complex/Cyclosome (APC/C) that mediates ubiquitin-dependent proteasomal degradation of key cell cycle regulators in eukaryotes. We show that L. donovani Cdc20 protein (LdCdc20p) can complement a lack of yeast Cdc20 protein in Saccharomyces cerevisiae cells, validating the functionality of LdCdc20p. Furthermore, we demonstrate cyclic expression of LdCdc20p and that it contains an active RXXL destruction motif, a distinctive feature of proteins targeted for proteasomal degradation by APC/C. Finally, in line with the proteasome mediating LdCdc20p degradation, promastigotes exposed to proteasome inhibitor display elevated LdCdc20p levels. Taken together our data indicate that Leishmania regulate their cell cycle by ubiquitin-dependent proteasomal degradation mediated by the APC/C.


Asunto(s)
Proteínas de Ciclo Celular/clasificación , Proteínas de Ciclo Celular/genética , Leishmania donovani/genética , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Genoma de Protozoos , Leishmania donovani/citología , Leishmania donovani/metabolismo , Filogenia , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
4.
Proc Natl Acad Sci U S A ; 105(3): 955-60, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18195366

RESUMEN

Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into "single-cell" expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Salud , Neoplasias/genética , Transcripción Genética/genética , Proteínas de Ciclo Celular/clasificación , Células Cultivadas , Biología Computacional , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/patología
5.
Biochem Soc Trans ; 38(Pt 1): 78-82, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20074039

RESUMEN

The APC/C (anaphase-promoting complex/cyclosome) discovered exactly 15 years ago by Avram Heshko and Marc Kirschner is by far the most complex ubiquitin ligase discovered so far. The APC/C is composed of roughly a dozen subunits and measures a massive 1.5 MDa. This huge complex, as well as its multiple modes of regulation, boasts impressive evolutionary conservation. One of its most puzzling features is its split personality: regulation of mitotic exit events on the one hand, and its ongoing activity during G(1)-phase, G(0)-phase and in terminally differentiated cells. The present short review is intended to provide a basic description of our current understanding of the APC/C, focusing on recent findings concerning its role in G(1)-phase and in differentiated cells.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/genética
6.
Biol Rev Camb Philos Soc ; 93(2): 801-810, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28913952

RESUMEN

Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.


Asunto(s)
Evolución Biológica , Meiosis/genética , Meiosis/fisiología , Reproducción/genética , Reproducción/fisiología , Animales , Femenino , Endogamia , Masculino , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Selección Genética
7.
Mol Cell Biol ; 24(9): 3577-87, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082755

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G(1). We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain. We found that Apc5 binds the poly(A) binding protein (PABP), which directly binds the IRES element. PABP was found to enhance IRES-mediated translation, whereas Apc5 overexpression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and cosediments with the ribosomal fraction. In contrast to Apc3, which is associated only with the APC/C and remains intact during differentiation, Apc5 is degraded upon megakaryocytic differentiation in correlation with IRES activation. Expression of Apc5 in differentiated cells abolished IRES activation. This is the first report implying an additional role for an APC/C subunit, apart from its being part of the APC/C complex.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Subunidad Apc5 del Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Humanos , Sustancias Macromoleculares , Megacariocitos/citología , Megacariocitos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas de Unión a Poli(A)/genética , Subunidades de Proteína/genética , ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/genética
8.
Mol Biol Cell ; 14(9): 3730-40, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12972560

RESUMEN

Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Proteínas de Ciclo Celular/metabolismo , Centrosoma/fisiología , Cromosomas/fisiología , Interfase/fisiología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas Cdc20 , Proteínas Cdh1 , Células Cultivadas , Ciclina A/metabolismo , Ciclina A2 , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/metabolismo , Humanos , Mitosis , Mutación , Lámina Nuclear/fisiología , Poro Nuclear/fisiología , Factores de Tiempo , Complejos de Ubiquitina-Proteína Ligasa
9.
PLoS One ; 12(1): e0169054, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28052107

RESUMEN

Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.


Asunto(s)
Daño del ADN/genética , Histonas/metabolismo , Ubiquitina/metabolismo , Línea Celular Tumoral , Reparación del ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Péptidos/metabolismo , Agregado de Proteínas/genética , Ubiquitinación
10.
J Cell Biol ; 215(2): 143-145, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27810907

RESUMEN

The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage.


Asunto(s)
Mitosis , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Puntos de Control del Ciclo Celular , Ciclina B1/metabolismo , Humanos , Microtúbulos/metabolismo , Huso Acromático/metabolismo
11.
J Cell Biol ; 213(2): 229-41, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27114501

RESUMEN

Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well understood. In this paper, we use conditionally destabilized reporters that undergo misfolding and ubiquitylation upon removal of a stabilizing ligand to examine the role of Ub conjugation in targeting proteins to IBs that are composed of an N-terminal fragment of mutant huntingtin, the causative protein of Huntington's disease. We show that reporters are excluded from IBs in the presence of the stabilizing ligand but are recruited to IBs after ligand washout. However, we find that Ub conjugation is not necessary to target reporters to IBs. We also report that forced Ub conjugation by the Ub fusion degradation pathway is not sufficient for recruitment to IBs. Finally, we find that reporters and Ub conjugates are stable at IBs. These data indicate that compromised folding states, rather than conjugation to Ub, can specify recruitment to IBs.


Asunto(s)
Citoplasma/metabolismo , Cuerpos de Inclusión/metabolismo , Pliegue de Proteína , Autofagia , Línea Celular , Humanos , Cuerpos de Inclusión/ultraestructura , Transporte de Proteínas , Imagen de Lapso de Tiempo , Ubiquitinación
12.
Methods Mol Biol ; 1342: 321-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26254934

RESUMEN

The eukaryotic cell cycle is comprised of different phases that take place sequentially once, and normally only once, every division cycle. Such a dynamic process is best viewed in real time in living dividing cells. The insights that can be gained from such methods are considerably larger than any alternative technique that only generates snapshots. A great number of studies can gain from live cell imaging; however this method often feels somewhat intimidating to the novice. The purpose of this chapter is to demonstrate that imaging cell cycle phases in living cells from yeast to human is relatively easy and can be performed with equipment that is available in most research institutes. We present the different approaches, review different types of reporters, and discuss in depth all the aspects to be considered to obtain optimal results. We also describe our latest cell cycle markers, which afford unprecedented "sub"-phase temporal resolution.


Asunto(s)
Ciclo Celular , Imagen Molecular/métodos , Saccharomycetales/citología , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Ratones , Células 3T3 NIH
13.
Cell Cycle ; 14(19): 3138-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26252546

RESUMEN

The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/C(Cdh1) mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1(m11) mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/C(Cdh1) substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , Mitosis/genética , Mitosis/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
14.
Nat Commun ; 6: 7075, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25959309

RESUMEN

Ndd1 activates the Mcm1-Fkh2 transcription factor to transcribe mitotic regulators. The anaphase-promoting complex/cyclosome activated by Cdh1 (APC/C(Cdh1)) mediates the degradation of proteins throughout G1. Here we show that the APC/C(Cdh1) ubiquitinates Ndd1 and mediates its degradation, and that APC/C(Cdh1) activity suppresses accumulation of Ndd1 targets. We confirm putative Ndd1 targets and identify novel ones, many of them APC/C(Cdh1) substrates. The APC/C(Cdh1) thus regulates these proteins in a dual manner­both pretranscriptionally and post-translationally, forming a multi-layered feedforward loop (FFL). We predict by mathematical modelling and verify experimentally that this FFL introduces a lag between APC/C(Cdh1) inactivation at the end of G1 and accumulation of genes transcribed by Ndd1 in G2. This regulation generates two classes of APC/C(Cdh1) substrates, early ones that accumulate in S and late ones that accumulate in G2. Our results show how the dual state APC/C(Cdh1) activity is converted into multiple outputs by interactions between its substrates.


Asunto(s)
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Cdh1/genética , Proteínas de Ciclo Celular/genética , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
15.
Diabetes ; 63(2): 578-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24130333

RESUMEN

Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic ß-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of ß-cells in mice. Quiescent ß-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ~5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing ß-cell replication and mass in patients with diabetes.


Asunto(s)
Fase G1/fisiología , Células Secretoras de Insulina/fisiología , Fase de Descanso del Ciclo Celular/fisiología , Animales , Glucoquinasa , Masculino , Ratones , Ratones Endogámicos ICR , Fase S/fisiología
16.
Cell Cycle ; 13(11): 1727-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24675888

RESUMEN

Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP-Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteína Quinasa CDC2 , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mos/metabolismo , Xenopus laevis , Quinasa Tipo Polo 1
17.
Mol Biol Cell ; 24(13): 2076-87, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23637465

RESUMEN

Ubiquitin accumulation in amyloid plaques is a pathological marker observed in the vast majority of neurodegenerative diseases, yet ubiquitin function in these inclusions is controversial. It has been suggested that ubiquitylated proteins are directed to inclusion bodies under stress conditions, when both chaperone-mediated refolding and proteasomal degradation are compromised or overwhelmed. Alternatively, ubiquitin and chaperones may be recruited to preformed inclusions to promote their elimination. We address this issue using a yeast model system, based on expression of several mildly misfolded degradation substrates in cells with altered chaperone content. We find that the heat shock protein 70 (Hsp70) chaperone pair Ssa1/Ssa2 and the Hsp40 cochaperone Sis1 are essential for degradation. Substrate ubiquitylation is strictly dependent on Sis1, whereas Ssa1 and Ssa2 are dispensable. Remarkably, in Ssa1/Ssa2-depleted cells, ubiquitylated substrates are sequestered into detergent-insoluble, Hsp42-positive inclusion bodies. Unexpectedly, sequestration is abolished by preventing substrate ubiquitylation. We conclude that Hsp40 is required for the targeting of misfolded proteins to the ubiquitylation machinery, whereas the decision to degrade or sequester ubiquitylated proteins is mediated by the Hsp70s. Accordingly, diminished Hsp70 levels, as observed in aging or certain pathological conditions, might be sufficient to trigger ubiquitin-dependent sequestration of partially misfolded proteins into inclusion bodies.


Asunto(s)
Adenosina Trifosfatasas/genética , Regulación Fúngica de la Expresión Génica , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Adenosina Trifosfatasas/metabolismo , Citoplasma/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Cuerpos de Inclusión/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
18.
J Cell Biol ; 196(5): 573-87, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22371559

RESUMEN

Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington's disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt-whether aggregated or not-did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Ubiquitina/metabolismo , Animales , Línea Celular , Estabilidad de Enzimas , Genes Reporteros , Células HEK293 , Humanos , Proteína Huntingtina , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina/genética , Ubiquitinación
19.
Dev Cell ; 23(4): 681-90, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23000141

RESUMEN

Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.


Asunto(s)
Proliferación Celular , Hepatocitos/citología , Transcripción Genética/genética , Transcriptoma , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Ciclo Celular , Diferenciación Celular , Supervivencia Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hepatocitos/metabolismo , Ratones , Ratones Transgénicos , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Cell Div ; 6: 23, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22204387

RESUMEN

BACKGROUND: Cdc5 (polo kinase/Plk1) is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28) phosphorylation site present. FINDINGS: Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans) and drastically reduces Clb2 levels. CONCLUSIONS: Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1) caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA