Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801863

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Like other herpesviruses, it has latent and lytic repertoires. However, there is evidence that some lytic genes can be directly activated by certain cellular factors. Cells undergoing endoplasmic reticulum stress express spliced X-box binding protein 1 (XBP-1s). XBP-1s is also present in large amounts in germinal center B cells. XBP-1s can activate the KSHV replication and transcription activator (RTA) and lytic replication. It can also directly activate KSHV-encoded viral interleukin-6 (vIL-6) and, thus, contribute to the pathogenesis of KSHV MCD. KSHV thymidine kinase (TK), the ORF21 gene product, can enhance the production of dTTP and is important for lytic replication. It can also phosphorylate zidovudine and ganciclovir to toxic moieties, enabling treatment of KSHV-MCD with these drugs. We show here that XBP-1s can directly activate ORF21 and that this activation is mediated primarily through two XBP-response elements (XRE) on the ORF21 promoter region. Deletion or mutation of these elements eliminated XBP-1s-induced upregulation of the promoter, and chromatin immunoprecipitation studies provide evidence that XBP-1s can bind to both XREs. Exposure of PEL cells to a chemical inducer of XBP-1s can induce ORF21 within 4 hours, and ORF21 expression in the lymph nodes of patients with KSHV-MCD is predominantly found in cells with XBP-1. Thus, XBP-1s may directly upregulate KSHV ORF21 and, thus, contribute to the pathogenesis of KSHV-MCD and the activity of zidovudine and valganciclovir in this disease.IMPORTANCE Spliced X-box binding protein 1 (XBP-1s), part of the unfolded protein response and expressed in developing germinal center B cells, can induce Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication and directly activate viral interleukin-6 (vIL-6). We show here that XBP-1s can also directly activate KSHV ORF21, a lytic gene. ORF21 encodes KSHV thymidine kinase (TK), which increases the pool of dTTP for viral replication and enhances lytic replication. Direct activation of ORF21 by XBP-1s can enhance viral replication in germinal center B cells and contribute to the pathogenesis of KSHV multicentric Castleman disease (MCD). KSHV-MCD is characterized by systemic inflammation caused, in part, by lytic replication and overproduction of KSHV vIL-6 in XBP-1s-expressing lymph node plasmablasts. KSHV thymidine kinase can phosphorylate zidovudine and ganciclovir to toxic moieties, and direct activation of ORF21 by XBP-1s may also help explain the effectiveness of zidovudine and valganciclovir in the treatment of KSHV-MCD.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Timidina Quinasa/genética , Proteínas Virales/genética , Proteína 1 de Unión a la X-Box/genética , Enfermedad de Castleman , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Mutación , Regiones Promotoras Genéticas , Sarcoma de Kaposi/virología , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas Virales/metabolismo , Replicación Viral
2.
PLoS Pathog ; 14(7): e1007130, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30001436

RESUMEN

Human gammaherpesviruses are associated with malignancies in HIV infected individuals; in macaques used in non-human primate models of HIV infection, gammaherpesvirus infections also occur. Limited data on prevalence and tumorigenicity of macaque gammaherpesviruses, mostly cross-sectional analyses of small series, are available. We comprehensively examine all three-rhesus macaque gammaherpesviruses -Rhesus rhadinovirus (RRV), Rhesus Lymphocryptovirus (RLCV) and Retroperitoneal Fibromatosis Herpesvirus (RFHV) in macaques experimentally infected with Simian Immunodeficiency Virus or Simian Human Immunodeficiency Virus (SIV/SHIV) in studies spanning 15 years at the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research. We evaluated 18 animals with malignancies (16 lymphomas, one fibrosarcoma and one carcinoma) and 32 controls. We developed real time quantitative PCR assays for each gammaherpesvirus DNA viral load (VL) in malignant and non-tumor tissues; we also characterized the tumors using immunohistochemistry and in situ hybridization. Furthermore, we retrospectively quantified gammaherpesvirus DNA VL and SIV/SHIV RNA VL in longitudinally-collected PBMCs and plasma, respectively. One or more gammaherpesviruses were detected in 17 tumors; generally, one was predominant, and the relevant DNA VL in the tumor was very high compared to surrounding tissues. RLCV was predominant in tumors resembling diffuse large B cell lymphomas; in a Burkitt-like lymphoma, RRV was predominant; and in the fibrosarcoma, RFHV was predominant. Median RRV and RLCV PBMC DNA VL were significantly higher in cases than controls; SIV/SHIV VL and RLCV VL were independently associated with cancer. Local regressions showed that longitudinal VL patterns in cases and controls, from SIV infection to necropsy, differed for each gammaherpesvirus: while RFHV VL increased only slightly in all animals, RLCV and RRV VL increased significantly and continued to increase steeply in cases; in controls, VL flattened. In conclusion, the data suggest that gammaherpesviruses may play a significant role in tumorogenesis in macaques infected with immunodeficiency viruses.


Asunto(s)
Coinfección/complicaciones , Infecciones por Herpesviridae/complicaciones , Neoplasias/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Infecciones Tumorales por Virus/complicaciones , Animales , Gammaherpesvirinae , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios
3.
J Int AIDS Soc ; 25(4): e25895, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35441468

RESUMEN

INTRODUCTION: HIV reservoirs and infected cells may persist in tissues with low concentrations of antiretrovirals (ARVs). Traditional pharmacology methods cannot assess variability in ARV concentrations within morphologically complex tissues, such as lymph nodes (LNs). We evaluated the distribution of six ARVs into LNs and the proximity of these ARVs to CD4+ T cells and cell-associated RT-SHIV viral RNA. METHODS: Between December 2014 and April 2017, RT-SHIV infected (SHIV+; N = 6) and healthy (SHIV-; N = 6) male rhesus macaques received two selected four-drug combinations of six ARVs over 10 days to attain steady-state conditions. Serial cryosections of axillary LN were analysed by a multimodal imaging approach that combined mass spectrometry imaging (MSI) for ARV disposition, RNAscope in situ hybridization for viral RNA (vRNA) and immunohistochemistry for CD4+ T cell and collagen expression. Spatial relationships across these four imaging domains were investigated by nearest neighbour search on co-registered images using MATLAB. RESULTS: Through MSI, ARV-dependent, heterogeneous concentrations were observed in different morphological LN regions, such as the follicles and medullary sinuses. After 5-6 weeks of infection, more limited ARV penetration into LN tissue relative to the blood marker heme was found in SHIV+ animals (SHIV+: 0.7 [0.2-1.4] mm; SHIV-: 1.3 [0.5-1.7] mm), suggesting alterations in the microcirculation. However, we found no detectable increase in collagen deposition. Regimen-wide maps of composite ARV distribution indicated that up to 27% of SHIV+ LN tissue area was not exposed to detectable ARVs. Regions associated with B cell follicles had median 1.15 [0.94-2.69] -fold reduction in areas with measurable drug, though differences were only statistically significant for tenofovir (p = 0.03). Median co-localization of drug with CD4+ target cells and vRNA varied widely by ARV (5.1-100%), but nearest neighbour analysis indicated that up to 10% of target cells and cell-associated vRNA were not directly contiguous to at least one drug at concentrations greater than the IC50 value. CONCLUSIONS: Our investigation of the spatial distributions of drug, virus and target cells underscores the influence of location and microenvironment within LN, where a small population of T cells may remain vulnerable to infection and low-level viral replication during suppressive ART.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antirretrovirales/uso terapéutico , Colágeno/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Ganglios Linfáticos/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , ARN Viral/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo
4.
Neurogastroenterol Motil ; 33(1): e13990, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32969549

RESUMEN

BACKGROUND: Damage to enteric neurons and impaired gastrointestinal muscle contractions cause motility disorders in 70% of diabetic patients. It is thought that enteric neuropathy and dysmotility occur before overt diabetes, but triggers of these abnormalities are not fully known. We tested the hypothesis that intestinal contents of mice with and without high-fat diet- (HFD-) induced diabetic conditions contain molecules that impair gastrointestinal movements by damaging neurons and disrupting muscle contractions. METHODS: Small and large intestinal segments were collected from healthy, standard chow diet (SCD) fed mice. Filtrates of ileocecal contents (ileocecal supernatants; ICS) from HFD or SCD mice were perfused through them. Cultured intact intestinal muscularis externa preparations were used to determine whether ICS and their fractions obtained by solid-phase extraction (SPE) and SPE subfractions collected by high-performance liquid chromatography (HPLC) disrupt muscle contractions by injuring neurons and smooth muscle cells. KEY RESULTS: ICS from HFD mice reduced intestinal motility, but those from SCD mice had no effect. ICS, aqueous SPE fractions and two out of twenty HPLC subfractions of aqueous SPE fractions from HFD mice blocked muscle contractions, caused a loss of nitrergic myenteric neurons through inflammation, and reduced smooth muscle excitability. Lipopolysaccharide and palmitate caused a loss of nitrergic myenteric neurons but did not affect muscle contractions. CONCLUSIONS & INFERENCES: Unknown molecules in intestinal contents of HFD mice trigger enteric neuropathy and dysmotility. Further studies are required to identify the toxic molecules and their mechanisms of action.


Asunto(s)
Dieta Alta en Grasa , Contenido Digestivo , Motilidad Gastrointestinal/fisiología , Seudoobstrucción Intestinal/fisiopatología , Miocitos del Músculo Liso/patología , Neuronas/patología , Animales , Ratones , Plexo Mientérico/patología , Extracción en Fase Sólida
5.
J Vis Exp ; (160)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32628155

RESUMEN

In situ hybridization is a powerful technique to identify specific RNA or DNA sequences within individual cells in tissue sections, providing important insights into physiological processes and disease pathogenesis. In situ hybridization (ISH) has been used for many years to assess the location of cells infected by viruses, but recently a next-generation ISH approach was developed with a unique probe design strategy that allows simultaneous signal amplification and background suppression to achieve single-molecule visualization while preserving tissue morphology. This next-generation ISH is based on an approach like branched PCR, but performed in situ and is more facile, sensitive, and reproducible than classical ISH methods or in situ PCR approaches in routinely detecting RNA or DNA in formalin-fixed paraffin embedded (FFPE) tissues. For the last several years our laboratory has been applying this ISH platform for the detection of human immunodeficiency (HIV) and simian immunodeficiency (SIV) viral RNA (vRNA) and/or viral DNA (vDNA) positive cells within a multitude of FFPE tissues. With this detailed technical manuscript, we would like to share our knowledge and advice with all individuals interested in using next-generation ISH in their research.


Asunto(s)
ADN Viral/genética , VIH/genética , Hibridación in Situ , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Epítopos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Adhesión en Parafina , Péptido Hidrolasas/metabolismo , Procesamiento de Señales Asistido por Computador , Fijación del Tejido
6.
Neurogastroenterol Motil ; 32(7): e13838, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32168415

RESUMEN

BACKGROUND: High-fat diet, microbial alterations and lipopolysaccharide (LPS) are thought to cause enteric diabetic neuropathy and intestinal dysmotility. However, the role of the gut microbiota, lipoteichoic acid (LTA) from Gram-positive bacteria and short-chain fatty acids (SCFAs) in the development of diabetic enteric neuropathy and intestinal dysmotility is not well understood. Our aim was to examine the role of the gut microbiota, LTA and SCFAs in the development of diabetic enteric neuropathy and intestinal dysmotility. METHODS: We fed germ-free (GF) and conventionally raised (CR) mice either a high-fat (HFD) or standard chow diet (SCD) for 8 weeks. We analyzed the microbial community composition in CR mice using 16S rRNA sequencing and damage to myenteric neurons using immunohistochemistry. We also studied the effects of LPS, LTA, and SCFAs on duodenal muscularis externa contractions and myenteric neurons using cultured preparations. KEY RESULTS: High-fat diet ingestion reduced the total number and the number of nitrergic myenteric neurons per ganglion in the duodenum of CR but not in GF-HFD mice. GF mice had fewer neurons per ganglion compared with CR mice. CR mice fed a HFD had increased abundance of Gram-positive bacteria. LTA and LPS did not affect the frequency of duodenal muscularis contractions after 24 hours of cultured but reduced the density of nitrergic myenteric neurons and increased oxidative stress and TNFα production in myenteric ganglia. SCFAs did not affect muscularis contractions or injure myenteric neurons. CONCLUSIONS & INFERENCES: Gut microbial alterations induced increase in Gram-positive bacterial LTA may contribute to enteric neuropathy.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Motilidad Gastrointestinal , Seudoobstrucción Intestinal/microbiología , Seudoobstrucción Intestinal/patología , Animales , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/microbiología , Plexo Mientérico/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ácidos Teicoicos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA