Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Neuropsychopharmacol ; 18(1)2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25522384

RESUMEN

BACKGROUND: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor's in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which had first-degree relatives treated for MDD. RESULTS: We found that having a family history of MDD was associated with lower striatal 5-HT4 receptor binding (p = 0.038; in individuals below 40 years, p = 0.013). Further, we found evidence for a "risk-dose effect" on 5-HT4 receptor binding, since the number of first-degree relatives with a history of MDD binding correlated negatively with 5-HT4 receptor binding in both the striatum (p = 0.001) and limbic regions (p = 0.012). CONCLUSIONS: Our data suggest that the 5-HT4 receptor is involved in the neurobiological mechanism underlying familial risk for depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment.


Asunto(s)
Encéfalo/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Predisposición Genética a la Enfermedad , Receptores de Serotonina 5-HT4/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Trastorno Depresivo Mayor/diagnóstico por imagen , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Piperidinas , Tomografía de Emisión de Positrones , Unión Proteica , Radiofármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adulto Joven
2.
Mol Pharm ; 11(8): 2796-806, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24955765

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific activity: a uPAR-targeting probe ((177)Lu-DOTA-AE105) and a nonbinding control ((177)Lu-DOTA-AE105mut). Both uPAR flow cytometry and ELISA confirmed high expression levels of the target uPAR in PC-3M-LUC2.luc cells, and cell binding studies using (177)Lu-DOTA-AE105 resulted in a specific binding with an IC50 value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted (177)Lu groups (p < 0.05) using bioluminescence imaging. Moreover, we found a significantly longer metastatic-free survival, with 65% of all mice without any disseminated metastatic lesions present at 65 days after first treatment dose (p = 0.047). In contrast, only 30% of all mice in the combined control groups treated with (177)Lu-DOTA-AE105mut or vehicle were without metastatic lesions. No treatment-induced toxicity was observed during the study as evaluated by observing animal weight and H&E staining of kidney tissue (dose-limiting organ). Finally, uPAR PET imaging using (64)Cu-DOTA-AE105 detected all small, disseminated metastatic foci when compared with bioluminescence imaging in a cohort of animals during the treatment study. In conclusion, uPAR targeted radiotherapy resulted in a significant reduction in the number of metastatic lesions in a human metastatic prostate cancer model. Furthermore, we have provided the first evidence of the potential for identification of small metastatic lesions using uPAR PET imaging in disseminated prostate cancer, illustrating the promising strategy of uPAR theranostics in prostate cancer.


Asunto(s)
Complejos de Coordinación/química , Lutecio/química , Oligopéptidos/química , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Animales , Línea Celular Tumoral , Supervivencia sin Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Concentración 50 Inhibidora , Ligandos , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Unión Proteica , Receptores del Activador de Plasminógeno Tipo Uroquinasa/química , Proteínas Recombinantes/química , Resultado del Tratamiento , Microtomografía por Rayos X
3.
Diagnostics (Basel) ; 12(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453899

RESUMEN

Arginine-Glycine-Aspartate (RGD)-recognizing cell surface integrins are involved in tumor growth, invasiveness/metastases, and angiogenesis, and are therefore an attractive treatment target in cancers. The subtype integrin αvß3 is upregulated on endothelial cells during angiogenesis and on tumor cells. In vivo assessment of integrin αvß3 is possible with positron emission tomography (PET). Preclinical data on radiochemical properties, tumor uptake and radiation exposure identified [68Ga]Ga-NODAGA-E[c(RGDyK)]2 as a promising candidate for clinical translation. In this first-in-human phase I study, we evaluate [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET in patients with neuroendocrine neoplasms (NEN) and breast cancer (BC). The aim was to investigate safety, biodistribution and dosimetry as well as tracer uptake in tumor lesions. A total of 10 patients (5 breast cancer, 5 neuroendocrine neoplasm) received a single intravenous dose of approximately 200 MBq [68Ga]Ga-NODAGA-E[c(RGDyK)]2. Biodistribution profile and dosimetry were assessed by whole-body PET/CT performed at 10 min, 1 h and 2 h after injection. Safety assessment with vital parameters, electrocardiograms and blood tests were performed before and after injection. In vivo stability of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 was determined by analysis of blood and urine. PET images were analyzed for tracer uptake in tumors and background organs. No adverse events or pharmacologic effects were observed in the 10 patients. [68Ga]Ga-NODAGA-E[c(RGDyK)]2 exhibited good in vivo stability and fast clearance, primarily by renal excretion. The effective dose was 0.022 mSv/MBq, equaling a radiation exposure of 4.4 mSv at an injected activity of 200 MBq. The tracer demonstrated stable tumor retention and good image contrast. In conclusion, this first-in-human phase I trial demonstrated safe use of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 for integrin αvß3 imaging in cancer patients, low radiation exposure and favorable uptake in tumors. Further studies are warranted to establish whether [68Ga]Ga-NODAGA-E[c(RGDyK)]2 may become a tool for early identification of patients eligible for treatments targeting integrin αvß3 and for risk stratification of patients.

4.
Int J Nanomedicine ; 15: 8571-8581, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173294

RESUMEN

BACKGROUND: The accumulation of liposome encapsulated chemotherapy in solid cancers is dependent on the presence of the enhanced permeability and retention (EPR) effect. Positron emission tomography (PET) imaging with a liposome encapsulated radioisotope, such as liposome encapsulated Cu-64 (64Cu-liposome) may help to identify tumors with high liposome accumulation, and thereby stratify patients based on expected benefit from liposomal chemotherapy. However, intravenous administration of liposomes without a cytotoxic content is complicated by the accelerated blood clearance (ABC) phenomenon for succeeding therapeutic liposome dosing. Alternative markers for assessing the tumor's EPR level are therefore warranted. MATERIALS AND METHODS: To increase our understanding of EPR variations and to ultimately identify an alternative marker for the EPR effect, we investigated the correlation between 64Cu-liposome PET/CT (EPR effect) and 68Ga-RGD PET/CT (neoangiogenesis), 18F-FDG PET/CT (glycolysis), diffusion-weighted MRI (diffusivity) and interstitial fluid pressure in two experimental cancer models (CT26 and COLO 205). RESULTS: 64Cu-liposome and 68Ga-RGD SUVmax displayed a significant moderate correlation, however, none of the other parameters evaluated displayed significant correlations. These results indicate that differences in neoangiogenesis may explain some EPR variability, however, as correlations were only moderate and not observed for SUVmean, 68Ga-RGD is probably insufficient to serve as a stand-alone surrogate marker for quantifying the EPR effect and stratifying patients.


Asunto(s)
Liposomas/farmacocinética , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Medios de Contraste , Radioisótopos de Cobre/farmacocinética , Difusión , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Radioisótopos de Galio/farmacocinética , Humanos , Liposomas/administración & dosificación , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Neoplasias/irrigación sanguínea , Neovascularización Patológica/diagnóstico por imagen , Oligopéptidos/farmacocinética , Permeabilidad , Presión , Radiofármacos/farmacocinética , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Diagnostics (Basel) ; 8(2)2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29772738

RESUMEN

Angiogenesis is considered integral to the reparative process after ischemic injury. The αvß3 integrin is a critical modulator of angiogenesis and highly expressed in activated endothelial cells. 68Ga-NODAGA-E[(cRGDyK)]2 (RGD) is a positron-emission-tomography (PET) ligand targeted towards αvß3 integrin. The aim was to present data for the uptake of RGD and correlate it with histology and to further illustrate the differences in angiogenesis due to porcine adipose-derived mesenchymal stromal cell (pASC) or saline treatment in minipigs after induction of myocardial infarction (MI). Three minipigs were treated with direct intra-myocardial injection of pASCs and two minipigs with saline. MI was confirmed by 82Rubidium (82Rb) dipyridamole stress PET. Mean Standardized Uptake Values (SUVmean) of RGD were higher in the infarct compared to non-infarct area one week and one month after MI in both pASC-treated (SUVmean: 1.23 vs. 0.88 and 1.02 vs. 0.86, p < 0.05 for both) and non-pASC-treated minipigs (SUVmean: 1.44 vs. 1.07 and 1.26 vs. 1.04, p < 0.05 for both). However, there was no difference in RGD uptake, ejection fractions, coronary flow reserves or capillary density in histology between the two groups. In summary, indications of angiogenesis were present in the infarcted myocardium. However, no differences between pASC-treated and non-pASC-treated minipigs could be demonstrated.

6.
J Nucl Med ; 58(3): 379-386, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27609788

RESUMEN

The overexpression of urokinase-type plasminogen activator receptors (uPARs) represents an established biomarker for aggressiveness in most common malignant diseases, including breast cancer (BC), prostate cancer (PC), and urinary bladder cancer (UBC), and is therefore an important target for new cancer therapeutic and diagnostic strategies. In this study, uPAR PET imaging using a 68Ga-labeled version of the uPAR-targeting peptide (AE105) was investigated in a group of patients with BC, PC, and UBC. The aim of this first-in-human, phase I clinical trial was to investigate the safety and biodistribution in normal tissues and uptake in tumor lesions. Methods: Ten patients (6 PC, 2 BC, and 2 UBC) received a single intravenous dose of 68Ga-NOTA-AE105 (154 ± 59 MBq; range, 48-208 MBq). The biodistribution and radiation dosimetry were assessed by serial whole-body PET/CT scans (10 min, 1 h, and 2 h after injection). Safety assessment included measurements of vital signs with regular intervals during the imaging sessions and laboratory blood screening tests performed before and after injection. In a subgroup of patients, the in vivo stability of 68Ga-NOTA-AE105 was determined in collected blood and urine. PET images were visually analyzed for visible tumor uptake of 68Ga-NOTA-AE105, and SUVs were obtained from tumor lesions by manually drawing volumes of interest in the malignant tissue. Results: No adverse events or clinically detectable pharmacologic effects were found. The radioligand exhibited good in vivo stability and fast clearance from tissue compartments primarily by renal excretion. The effective dose was 0.015 mSv/MBq, leading to a radiation burden of 3 mSv when the clinical target dose of 200 MBq was used. In addition, radioligand accumulation was seen in primary tumor lesions as well as in metastases. Conclusion: This first-in-human, phase I clinical trial demonstrates the safe use and clinical potential of 68Ga-NOTA-AE105 as a new radioligand for uPAR PET imaging in cancer patients.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Oligopéptidos/farmacocinética , Tomografía de Emisión de Positrones/métodos , Exposición a la Radiación/análisis , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Femenino , Compuestos Heterocíclicos/farmacocinética , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Imagen Molecular/métodos , Especificidad de Órganos , Proyectos Piloto , Dosis de Radiación , Exposición a la Radiación/prevención & control , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Recuento Corporal Total
7.
Diagnostics (Basel) ; 6(2)2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27322329

RESUMEN

Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvß3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvß3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by (82)Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.

8.
J Nucl Med ; 57(2): 272-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26429955

RESUMEN

UNLABELLED: Glioblastoma is one of the most malignant types of human cancer, and the prognosis is poor. The development and validation of novel molecular imaging biomarkers has the potential to improve tumor detection, grading, risk stratification, and treatment monitoring of gliomas. The aim of this study was to explore the potential of PET imaging of the urokinase-type plasminogen activator receptor (uPAR) in glioblastoma. METHODS: The uPAR messenger RNA expression of tumors from 19 glioblastoma patients was analyzed, and a cell culture derived from one of these patients was used to establish an orthotopic xenograft model of glioblastoma. Tumor growth was monitored using bioluminescence imaging. Five to six weeks after inoculation, all mice were scanned with small-animal PET/CT using two new uPAR PET ligands ((64)Cu-NOTA-AE105 and (68)Ga-NOTA-AE105) and, for comparison, O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET). One MRI scan was obtained for each mouse to confirm tumor location. The uPAR specificity of (64)Cu-NOTA-AE105 was confirmed by alignment of hematoxylin- and eosin-stained and uPAR immunohistochemistry-stained slides of the brain with the activity distribution as determined using autoradiography. RESULTS: uPAR expression was found in all 19 glioblastoma patient tumors, and high expression of uPAR correlated with decreased overall survival (P = 0.04). Radiolabeling of NOTA-AE105 with (64)Cu and (68)Ga was straightforward, resulting in a specific activity of approximately 20 GBq/µmol and a radiochemical purity of more than 98% for (64)Cu-NOTA-AE105 and more than 97% for (68)Ga-NOTA-AE105. High image contrast resulting in clear tumor delineation was found for both (68)Ga-NOTA-AE105 and (64)Cu-NOTA-AE105. Absolute uptake in tumor was higher for (18)F-FET (3.5 ± 0.8 percentage injected dose [%ID]/g) than for (64)Cu-NOTA-AE105 (1.2 ± 0.4 %ID/g) or (68)Ga-NOTA-AE105 (0.4 ± 0.1 %ID/g). A similar pattern was observed in background brain tissue, where uptake was 1.9 ± 0.1 %ID/g for (18)F-fluorothymidine, compared with 0.05 ± 0.01 %ID/g for (68)Ga-NOTA-AE105 and 0.11 ± 0.02 %ID/g for (64)Cu-NOTA-AE105. The result was a significantly higher tumor-to-background ratio for both (68)Ga-NOTA-AE105 (7.6 ± 2.1, P < 0.05) and (64)Cu-NOTA-AE105 (10.6 ± 2.3, P < 0.01) than for (18)F-FET PET (1.8 ± 0.3). Autoradiography of brain slides confirmed that the accumulation of (64)Cu-NOTA-AE105 corresponded well with uPAR-positive cancer cells. CONCLUSION: On the basis of our translational study, uPAR PET may be a highly promising imaging biomarker for glioblastoma. Further clinical exploration of uPAR PET in glioblastoma is therefore justified.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Adulto , Animales , Autorradiografía , Biomarcadores de Tumor , Células Cultivadas , Radioisótopos de Cobre , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Tomografía de Emisión de Positrones , ARN Mensajero/biosíntesis , Radiofármacos , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Theranostics ; 5(12): 1303-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26516369

RESUMEN

A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with (64)Cu for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of (64)Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment with laboratory blood screening tests was performed before and after PET ligand injection. In a subgroup of the patients, the in vivo stability of our targeted PET ligand was determined in collected blood and urine. No adverse or clinically detectable side effects in any of the 10 patients were found. The ligand exhibited good in vivo stability and fast clearance from plasma and tissue compartments by renal excretion. In addition, high uptake in both primary tumor lesions and lymph node metastases was seen and paralleled high uPAR expression in excised tumor tissue. Overall, this first-in-human study therefore provides promising evidence for safe use of (64)Cu-DOTA-AE105 for uPAR PET imaging in cancer patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico , Receptores del Activador de Plasminógeno Tipo Uroquinasa/análisis , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Mama/patología , Radioisótopos de Cobre/administración & dosificación , Radioisótopos de Cobre/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Femenino , Compuestos Heterocíclicos con 1 Anillo/administración & dosificación , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Oligopéptidos/administración & dosificación , Oligopéptidos/metabolismo , Pronóstico , Neoplasias de la Próstata/patología , Unión Proteica , Neoplasias de la Vejiga Urinaria/patología
10.
Nucl Med Biol ; 41(3): 259-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24417983

RESUMEN

INTRODUCTION: The aim of this study was to synthesize and perform a side-by-side comparison of two new tumor-angiogenesis PET tracers (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) in vivo using human xenograft tumors in mice. Human radiation burden was estimated to evaluate potential for future use as clinical PET tracers for imaging of neo-angiogenesis. METHODS: A (68)Ge/(68)Ga generator was used for the synthesis of (68)Ga-NODAGA-E[c(RGDyK)](2). (68)Ga and (64)Cu labeled NODAGA-E[c(RGDyK)](2) tracers were administrated in nude mice bearing either human glioblastoma (U87MG) or human neuroendocrine (H727) xenograft tumors. PET/CT scans at 3 time points were used for calculating the tracer uptake in tumors (%ID/g), integrin αVß3 target specificity was shown by blocking with cold NODAGA-E[c(RGDyK)](2), and biodistribution in normal organs were also examined. From biodistribution data in mice human radiation-absorbed doses were estimated using OLINDA/EXM software. RESULTS: (68)Ga-NODAGA-E[c(RGDyK)](2) was synthesized with a radiochemical purity of 89%-99% and a specific activity (SA) of 16-153 MBq/nmol. (64)Cu-NODAGA-E[c(RGDyK)](2) had a purity of 92%-99% and an SA of 64-78 MBq/nmol. Both tracers showed similar uptake in xenograft tumors 1h after injection (U87MG: 2.23 vs. 2.31%ID/g; H727: 1.53 vs. 1.48%ID/g). Both RGD dimers showed similar tracer uptake in non-tumoral tissues and a human radiation burden of less than 10 mSv with an administered dose of 200 MBq was estimated. CONCLUSION: (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) can be easily synthesized and are both promising candidates for PET imaging of integrin αVß3 positive tumor cells. (68)Ga-NODAGA-E[c(RGDyK)](2) showed slightly more stable tumor retention. With the advantage of in-house commercially (68)Ge/(68)Ga generators, (68)Ga-NODAGA-E[c(RGDyK)](2) may be the best choice for future clinical PET imaging in humans.


Asunto(s)
Acetatos/química , Transformación Celular Neoplásica , Radioisótopos de Cobre , Glioblastoma/patología , Compuestos Heterocíclicos con 1 Anillo/química , Oligopéptidos/química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Femenino , Radioisótopos de Galio , Glioblastoma/irrigación sanguínea , Glioblastoma/diagnóstico por imagen , Humanos , Ratones , Ratones Desnudos , Neovascularización Patológica/diagnóstico por imagen , Oligopéptidos/farmacocinética , Radioquímica , Radiometría , Distribución Tisular , Tomografía Computarizada por Rayos X
11.
PLoS One ; 6(2): e16678, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21347251

RESUMEN

Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[(18)F]fluoro-proline (cis-Fpro), for non-invasive assessment of collagen synthesis in rat musculoskeletal tissues at rest and following short-term (3 days) treadmill running. Musculoskeletal collagen synthesis was studied in rats at rest and 24 h post-exercise. At each session, rats were PET scanned at two time points following injection of cis-FPro: (60 and 240 min p.i). SUV were calculated for Achilles tendon, calf muscle and tibial bone. The PET-derived results were compared to mRNA expression of collagen type I and III. Tibial bone had the highest SUV that increased significantly (p<0.001) from the early (60 min) to the late (240 min) PET scan, while SUV in tendon and muscle decreased (p<0.001). Exercise had no influence on SUV, which was contradicted by an increased gene expression of collagen type I and III in muscle and tendon. The clearly, visible uptake of cis-Fpro in the collagen-rich musculoskeletal tissues is promising for multi-tissue studies in vivo. The tissue-specific differences with the highest basal uptake in bone are in accordance with earlier studies relying on tissue incorporation of isotopic-labelled proline. A possible explanation of the failure to demonstrate enhanced collagen synthesis following exercise, despite augmented collagen type I and III transcription, is that SUV calculations are not sensitive enough to detect minor changes in collagen synthesis. Further studies including kinetic compartment modeling must be performed to establish whether cis-Fpro can be used for non-invasive in-vivo assessment of exercise-induced changes in musculoskeletal collagen synthesis.


Asunto(s)
Colágeno/biosíntesis , Tejido Conectivo/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Tomografía de Emisión de Positrones/métodos , Prolina/análogos & derivados , Tendones/metabolismo , Animales , Transporte Biológico , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/biosíntesis , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Tejido Conectivo/diagnóstico por imagen , Masculino , Músculo Esquelético/diagnóstico por imagen , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Descanso , Tendones/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA