Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(18): 182501, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763910

RESUMEN

Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this Letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive ω electroproduction off the proton, ep→e^{'}pω, at central Q^{2} values of 1.60, 2.45 GeV^{2}, at W=2.21 GeV. The results of our pioneering -u≈-u_{min} study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^{2}=2.45 GeV^{2}, the observed dominance of σ_{T} over σ_{L}, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes: universal nonperturbative objects only accessible through backward-angle kinematics.

2.
Phys Rev Lett ; 115(15): 152001, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550716

RESUMEN

Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θ_{cm}^{p}=70°. The longitudinal transfer K_{LL}, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

3.
Phys Rev Lett ; 112(18): 182501, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856691

RESUMEN

The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π(±) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV(2) at W=1.95 GeV, and Q(2)=2.45 GeV(2) at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on RL and RT, and compare them with theoretical calculations. Results for the separated ratio RL indicate dominance of the pion-pole diagram at low -t, while results for RT are consistent with a transition between pion knockout and quark knockout mechanisms.

4.
Phys Rev Lett ; 108(22): 222004, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23180491

RESUMEN

We present new data for the polarization observables of the final state proton in the (1)H(γ,p)π(0) reaction. These data can be used to test predictions based on hadron helicity conservation and perturbative QCD. These data have both small statistical and systematic uncertainties and were obtained with beam energies between 1.8 and 5.6 GeV and for π(0) scattering angles larger than 75° in the center-of-mass frame. The data extend the polarization measurements database for neutral pion photoproduction up to E(γ)=5.6 GeV. The results show a nonzero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and π(0) scattering angle in the center-of-mass frame. This indicates that hadron helicity conservation does not hold and that the perturbative QCD limit is still not reached in the energy regime of this experiment.

5.
Phys Rev Lett ; 106(5): 052501, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405386

RESUMEN

We measured with unprecedented precision the induced polarization P(y) in (4)He(e,e'p)(3)H at Q(2)=0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

6.
Phys Rev Lett ; 106(13): 132501, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21520982

RESUMEN

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over →],e(')p[over →]) reaction for three different beam energies at a Q(2)=2.5 GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals µ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(ℓ) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.

7.
Phys Rev Lett ; 104(24): 242301, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20873943

RESUMEN

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.

8.
Phys Rev Lett ; 105(7): 072001, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20868031

RESUMEN

Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q{2}=0.8 and 1.3 (GeV/c){2} with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e'p) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.

9.
Phys Rev Lett ; 97(19): 192001, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17155616

RESUMEN

The 1H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F(pi)) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F(pi) is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative quantum chromodynamics prediction.

10.
Phys Rev Lett ; 95(10): 102001, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16196919

RESUMEN

We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W = 1.23 GeV at Q(2) = 1.0 (GeV/c)(2), obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S(1+)/M(1+)) = -(6.84 +/- 0.15)% and Re (E(1+)/M(1+)) = -(2.91 +/- 0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ll(pi) < or = 1 truncation.

11.
Phys Rev Lett ; 94(14): 142301, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15904058

RESUMEN

We report the results of a new Rosenbluth measurement of the proton electromagnetic form factors at Q2 values of 2.64, 3.20, and 4.10 GeV2. Cross sections were determined by detecting the recoiling proton, in contrast to previous measurements which detected the scattered electron. Cross sections were determined to 3%, with relative uncertainties below 1%. The ratio mu(p)G(E)/G(M) was determined to 4%-8% and showed mu(p)G(E)/G(M) approximately 1. These results are consistent with, and much more precise than, previous Rosenbluth extractions. They are inconsistent with recent polarization transfer measurements of similar precision, implying a systematic difference between the techniques.

12.
Phys Rev Lett ; 93(12): 122001, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15447252

RESUMEN

We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.

13.
Phys Rev Lett ; 86(9): 1713-6, 2001 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-11290230

RESUMEN

Separated longitudinal and transverse structure functions for the reaction 1H(e,e(')pi(+))n were measured in the momentum transfer region Q2 = 0.6--1.6 (GeV/c)(2) at a value of the invariant mass W = 1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parametrization fitted to very low Q2 elastic data.

14.
Phys Rev Lett ; 91(5): 052301, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12906589

RESUMEN

We have measured the proton recoil polarization in the 4He(e-->,e(')p-->)4H reaction at Q(2)=0.5, 1.0, 1.6, and 2.6 (GeV/c)(2). The measured ratio of polarization transfer coefficients differs from a fully relativistic calculation, favoring the inclusion of a medium modification of the proton form factors predicted by a quark-meson coupling model. In addition, the measured induced polarizations agree reasonably well with the fully relativistic calculation indicating that the treatment of final-state interactions is under control.

15.
Phys Rev Lett ; 88(9): 092301, 2002 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-11863996

RESUMEN

The ratio of the electric and magnetic form factors of the proton G(E(p))/G(M(p)), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic e(-->)p---> e(-->)p reaction. The new data presented span the range 3.5< Q(2)< 5.6 GeV(2) and are well described by a linear Q(2) fit. Also, the ratio sqrt[Q(2)] F(2(p))/F(1(p)) reaches a constant value above Q(2) = 2 GeV(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA