Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 113(10): 2160-2167, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29102396

RESUMEN

Sensors for imaging brain activity have been under development for almost 50 years. The development of some of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In particular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss the present state of the art and indicate areas of active development.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo/fisiología , Fenómenos Electrofisiológicos
2.
J Neurosci ; 33(16): 6905-16, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595749

RESUMEN

Olfactory glomeruli are innervated with great precision by the axons of different olfactory sensory neuron types and act as functional units in odor information processing. Approximately 140 glomeruli are present in each olfactory bulb of adult zebrafish; these units consist of either highly stereotypic large glomeruli or smaller anatomically indistinguishable glomeruli. In the present study, we investigated developmental differences among these types of glomeruli. We observed that 10 large and individually identifiable glomeruli already developed before hatching, at 72 h after fertilization, in configurations that resembled their mature organization. However, the cross-sectional area of these glomeruli increased throughout larval development, and they eventually comprised the largest units in postlarval olfactory bulbs. In contrast, small and anatomically indistinguishable glomeruli formed only after hatching, apparently by segregating from five larger precursors that were identifiable during embryonic development. The differentiation of these small glomeruli proceeded with conspicuous variation in number and arrangement, both among larvae and between olfactory bulbs of the same individuals. To determine factors that might contribute to this variability, we investigated the effects of olfactory enrichment on the development of amino acid-responsive lateral glomeruli, which include both large and small units. Larvae reared in an amino acid-enriched environment had normal large lateral glomeruli, but the small lateral glomeruli were more numerous and displayed reduced cross-sectional areas compared with glomeruli in control animals. Our results suggest that large and small glomeruli mature via distinct developmental processes that may be differentially influenced by sensory experience.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Red Nerviosa/fisiología , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/fisiología , Aminoácidos/farmacología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Proteínas de Unión al GTP/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemocianinas/metabolismo , Larva , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Red Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Sci Rep ; 5: 10212, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25970202

RESUMEN

Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.


Asunto(s)
Técnicas Biosensibles , Encéfalo/fisiología , Calcio/metabolismo , Potenciales de Acción , Animales , Dependovirus/genética , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Microscopía Fluorescente , Imagen Molecular , Odorantes , Bulbo Olfatorio/fisiología , Transgenes
4.
Dev Neurobiol ; 73(7): 543-58, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23447551

RESUMEN

We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Papilas Gustativas/embriología , Papilas Gustativas/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Epitelio/embriología , Epitelio/inervación , Epitelio/metabolismo , Factores de Transcripción/biosíntesis , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
5.
J Comp Neurol ; 520(11): 2317-39, Spc1, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22581687

RESUMEN

Odor molecules are transduced by thousands of olfactory sensory neurons (OSNs) located in the nasal cavity. Each OSN expresses a single functional odorant receptor protein and projects an axon from the sensory epithelia to an olfactory bulb glomerulus, which is selectively innervated by only one or a few OSN types. We used whole-mount immunocytochemistry to study the neurochemistry and anatomical organization of glomeruli in the zebrafish olfactory system. By employing combinations of antibodies against G-protein α subunits, calcium-binding proteins, and general neuronal markers, we selectively labeled various OSN types, their axonal projections to glomeruli, and the detailed anatomical distributions of individual glomeruli in different regions of the olfactory bulb. In this way we identified ≈140 glomeruli in each olfactory bulb of mature zebrafish. A small subset (27) of these glomeruli was unambiguously identifiable in nearly all animals examined. These units were large and, located mainly in the medial olfactory bulbs. Most glomeruli, however, were comparatively small, anatomically indistinguishable, and located in coarsely circumscribed regions; almost all of these latter glomeruli were innervated by OSNs that were labeled with anti-G(α s/olf) and/or anti-calretinin antibodies. Collectively, our results provide a uniquely detailed description of a vertebrate olfactory system and highlight anatomically distinct parallel neural pathways that mediate early aspects of olfactory processing in the zebrafish.


Asunto(s)
Axones/clasificación , Neuronas/citología , Bulbo Olfatorio/citología , Vías Olfatorias/citología , Pez Cebra/anatomía & histología , Animales , Inmunohistoquímica , Microscopía Confocal , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Pez Cebra/fisiología
6.
Behav Brain Res ; 198(1): 190-8, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19056431

RESUMEN

The zebrafish olfactory system is an attractive model for studying neural processing of chemosensory information. Here we characterize zebrafish olfactory behaviors and their modification through learning, using an apparatus consisting of a circular flow-through tank that allows controlled administration of odorants. When exposed to the amino acids l-alanine and l-valine, naive zebrafish responded with appetitive swimming behavior, which we measured as the number of >90 degrees turns made during 30s observation periods. Such appetitive responses were not observed when naive zebrafish were exposed to an unnatural odorant, phenylethyl alcohol (PEA). Repeated pairing of amino acids or PEA (conditioned stimuli, CS) with food flakes (unconditioned stimuli; UCS) increased odorant-evoked appetitive swimming behavior in all fish tested. The zebrafish also learned to restrict this behavior to the vicinity of a feeding ring, through which UCS were administered. When both nares were temporarily occluded, conditioned fish failed to respond to odorants, confirming that these behaviors were mediated by olfaction. These results represent the first demonstration of a classically conditioned appetitive response to a behaviorally neutral odorant in fish. Furthermore, they complement recent demonstrations of conditional place preferences in fish. By virtue of its robustness and simplicity, this method will be a useful tool for future research into the biological basis of olfactory learning in zebrafish.


Asunto(s)
Conducta Apetitiva/fisiología , Aprendizaje por Asociación/fisiología , Condicionamiento Clásico/fisiología , Odorantes , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Aprendizaje Discriminativo/fisiología , Actividad Motora/fisiología , Vías Olfatorias/anatomía & histología , Natación , Pez Cebra
7.
J Exp Biol ; 209(Pt 23): 4676-89, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17114401

RESUMEN

Larval molluscs commonly use ciliated vela to swim and feed. In this study we used immunohistochemistry to demonstrate innervation of velar cilia and muscles by monoaminergic and peptidergic fibres in the caenogastropod, Ilyanassa obsoleta. Photoelectric recordings from pre-oral cilia on isolated pieces of velum revealed that serotonin increased, whereas catecholamines (dopamine and norepinephrine) decreased beat frequency at concentrations of 10(-6) to 10(-9) mol l(-1). Catecholamines also increased the frequency of momentary, isolated arrests of pre-oral cilia, but failed to suppress beating of the post-oral cilia at these concentrations. The neuropeptides, FMRFamide and Leu-enkephalin, did not affect the frequency of ciliary beating or of isolated ciliary arrests, but did induce numerous muscular contractions, which were accompanied by sustained ciliary arrests. In terms of whole animal behaviour, serotonin caused larvae to concentrate toward the top of a water column and to increase feeding, whereas catecholamines caused larvae to concentrate toward the bottom of a water column and decrease feeding. Monoamine analogues which facilitated or opposed the effects of synthetic transmitters on larval behaviour, further suggested that these transmitters are released endogenously to control velar function. Finally, applications of peptides to whole larvae caused increased frequency of locomotory arrests. Together these findings demonstrate several potential roles for the nervous system in controlling larval behaviour in gastropods.


Asunto(s)
Gastrópodos/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Cilios/fisiología , Gastrópodos/anatomía & histología , Larva/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA