Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Catal Today ; 387: 186-196, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582111

RESUMEN

The 100th anniversary of a leading nitrogen fixation technology developer like CASALE SA is a reason to reflect over the 20th century successful solution of the problem of world food supply, and to look out for solutions for sustainable developments with respect to ammonia production. We review the role of nitrogen as essential chemical constituent in photosynthesis and biology, and component of ammonia as it is used as fertilizer for primary production by photosynthesis for farming and food supply and its future role as energy carrier. While novel synthesis methods and very advanced synchrotron based x-ray analytical techniques are being developed, we feel it is important to refer to the historical and economical context of nitrogen. The breaking of the N≡N triple bond remains a fundamental chemical and energetic problem in this context. We review the electrochemical ammonia synthesis as an energetically and environmentally benign method. Two relatively novel X-ray spectroscopy methods, which are relevant for the molecular understanding of the catalysts and biocatalysts, i.e. soft X-ray absorption spectroscopy and nuclear resonant vibration spectroscopy are presented. We illustrate the perceived reality in fertilizer usage on the field, and fertilizer production in the factory complex with photos and thus provide a contrast to the academic view of the molecular process of ammonia function and production.

2.
Small ; 17(30): e2100320, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34151514

RESUMEN

The severe charge recombination and the sluggish kinetic for oxygen evolution reaction have largely limited the application of hematite (α-Fe2 O3 ) for water splitting. Herein, the construction of Cu2 S/Fe2 O3 heterojunction and discover that the formation of covalent SO bonds between Cu2 S and Fe2 O3 can significantly improve the photoelectrochemical performance and stability for water splitting is reported. Compared with bare Fe2 O3 , the heterostructure of Cu2 S/Fe2 O3 endows the resulting electrode with enhanced charge separation and transfer, extended range for light absorption, and reduced charge recombination rate. Additionally, due to the photothermal properties of Cu2 S, the heterostructure exhibits locally a higher temperature under illumination, profitable for increasing the rate of oxygen evolution reaction. Consequently, the photocurrent density of the heterostructure is enhanced by 177% to be 1.19 mA cm-2 at 1.23 V versus reversible hydrogen electrode. This work may provide guideline for future in the design and fabrication of highly efficient photoelectrodes for various reactions.

3.
J Synchrotron Radiat ; 28(Pt 2): 448-454, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650556

RESUMEN

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra were recorded to investigate the electronic structure and local crystal structure of ZnO and ZnO:B powders produced via hydrothermal synthesis. ZnO and ZnO:B grow as micrometre-scale rods with hexagonal shape, as confirmed by scanning electron microscopy micrographs. The number of broken ZnO:B rods increases with increasing B concentration, as observed in the images, due to B atoms locating in between the Zn and O atoms which weakens and/or breaks the Zn-O bonds. However, no disorder within the crystallographic structure of ZnO upon B doping is observed from X-ray diffraction results, which were supported by EXAFS results. To determine the atomic locations of boron atoms in the crystal structure and their influence on the zinc atoms, EXAFS data were fitted with calculated spectra using the crystal structure parameters obtained from the crystallographic analysis of the samples. EXAFS data fitting and complementary k-weight analysis revealed the positions of the B atoms - their positions were determined to be in between the Zn and O atoms.

4.
Chimia (Aarau) ; 73(11): 952-956, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753081

RESUMEN

On 27 September 2019, a workshop for the Swiss stakeholders for the SUNRISE flagship project was held at Empa in Dübendorf. The workshop had the aim of community building and was attended by over 30 participants from Switzerland, France, and South Africa. The secondary purpose of the workshop was the inclusion of the previously competing ENERGY-X flagship project into a future joint project from SUNRISE and ENERGY-X. The workshop program had 20 technical presentations including posters, a panel discussion and an interactive session.

5.
Chimia (Aarau) ; 73(11): 936-942, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753075

RESUMEN

Electric charge transport is an essential process for all electrical and electrochemical energy systems, including inanimate and animate matter. In this issue on materials for energy conversion, we compare and discuss the role of electron holes and protons as charge carriers in solids. Specifically we outline how the temperature or thermal bath affect the charge carrier concentration and mobility for some metal oxides with the perovskite structure. The frequent observation that the conductivity becomes independent of the activation energy at the isokinetic temperature, known as the Meyer-Neldel rule, is an important aspect of our interpretation of the physical mechanism of conduction by polaron hopping.

6.
Top Curr Chem ; 371: 253-324, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26267386

RESUMEN

In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

7.
Soft Matter ; 12(40): 8367-8374, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27722657

RESUMEN

Periodic precipitation processes in gels can result in impressive micro- and nanostructured patterns known as periodic precipitation (or Liesegang bands). Under certain conditions, the silver nitrate-chromium(vi) system exhibits the coexistence of two kinds of Liesegang bands with different frequencies. We now present that the two kinds of bands form independently on different time scales and the pH-dependent chromate(vi)-dichromate(vi) equilibrium controls the formation of the precipitates. We determined the spatial distribution and constitution of the particles in the bands using focused ion beam-scanning electron microscopy (FIB-SEM) and scanning transmission X-ray spectromicroscopy (STXM) measurements. This provided the necessary empirical input data to formulate a model for the pattern formation; a model that quantitatively reproduces the experimental observations. Understanding the pattern-forming process at the molecular level enables us to tailor the size and the shape of the bands, which, in turn, can lead to new functional architectures for a range of applications.

8.
J Synchrotron Radiat ; 22(5): 1327-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26289288

RESUMEN

It is a regrettable decision by Karlsruhe Institute of Technology that ANKA, the Angströmquelle Karlsruhe, is terminating its external synchrotron user support program. ANKA has an excellent performance review grading sheet and has been a valuable source and resource to international users for over a decade. There is concern among users that ANKA's decision could become an example for other synchrotrons as well.

9.
Chemistry ; 21(11): 4188-99, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25504590

RESUMEN

Artificial photosynthesis (AP) is inspired by photosynthesis in nature. In AP, solar hydrogen can be produced by water splitting in photoelectrochemical cells (PEC). The necessary photoelectrodes are inorganic semiconductors. Light-harvesting proteins and biocatalysts can be coupled with these photoelectrodes and thus form bioelectronic interfaces. We expand this concept toward PEC devices with vital bio-organic components and interfaces, and their integration into the built environment.


Asunto(s)
Hidrógeno/metabolismo , Fotosíntesis/fisiología , Agua/metabolismo , Electrodos , Energía Solar
10.
Langmuir ; 31(5): 1828-34, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25586218

RESUMEN

The synthesis of different sizes of nanoparticles and microparticles is important in designing nanostructured materials with various properties. Wet synthesis methods lack the flexibility to create various sizes of particles (particle libraries) using fixed conditions without the repetition of the steps in the method with a new set of parameters. Here, we report a synthesis method based on nucleation and particle growth in the wake of a moving chemical front in a gel matrix. The process yields well-separated regions (bands) filled with nearly monodisperse nanoparticles and microparticles, with the size of the particles varying from band to band in a predictable way. The origin of the effect is due to an interplay of a precipitation reaction of the reagents and their diffusion that is controlled in space and time by the moving chemical front. The method represents a new approach and a promising tool for the fast and competitive synthesis of various sizes of colloidal particles.


Asunto(s)
Microesferas , Microtecnología/métodos , Nanopartículas/química , Nanotecnología/métodos , Tamaño de la Partícula , Difusión
11.
J Chem Phys ; 143(11): 114705, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26395726

RESUMEN

The electronic structure of the (La(0.8)Sr(0.2))(0.98)Mn(1-x)Cr(x)O3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La,Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) ↑ state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) ↑ state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La,Sr)MnO3 is presented.

12.
Langmuir ; 30(31): 9251-5, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-24960049

RESUMEN

This study demonstrates that the Marangoni flow in a channel network can solve maze problems such as exploring and visualizing the shortest path and finding all possible solutions in a parallel fashion. The Marangoni flow is generated by the pH gradient in a maze filled with an alkaline solution of a fatty acid by introducing a hydrogel block soaked with an acid at the exit. The pH gradient changes the protonation rate of fatty acid molecules, which translates into the surface tension gradient at the liquid-air interface through the maze. Fluid flow maintained by the surface tension gradient (Marangoni flow) can drag water-soluble dye particles toward low pH (exit) at the liquid-air interface. Dye particles placed at the entrance of the maze dissolve during this motion, thus exhibiting and finding the shortest path and all possible paths in a maze.

13.
Adv Sci (Weinh) ; 11(2): e2305065, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922524

RESUMEN

Ion transport in crystalline solids is an essential process for many electrochemical energy converters such as solid-state batteries and fuel cells. Empirical data have shown that ion transport in crystal lattices obeys the Meyer-Neldel Rule (MNR). For similar, closely related materials, when the material properties are changed by doping or by strain, the measured ionic conductivities showing different activation energies intersect on the Arrhenius plot, at an isokinetic temperature. Therefore, the isokinetic temperature is a critical parameter for improving the ionic conductivity. However, a comprehensive understanding of the fundamental mechanism of MNR in ion transport is lacking. Here the physical significance and applicability of MNR is discussed, that is, of activation entropy-enthalpy compensation, in crystalline fast ionic conductors, and the methods for determining the isokinetic temperature. Lattice vibrations provide the excitation energy for the ions to overcome the activation barrier. The multi-excitation entropy model suggests that isokinetic temperature can be tuned by modulating the excitation phonon frequency. The relationship between isokinetic temperature and isokinetic prefactor can provide information concerning conductivity mechanisms. The need to effectively determine the isokinetic temperature for accelerating the design of new fast ionic conductors with high conductivity is highlighted.

14.
J Synchrotron Radiat ; 20(Pt 4): 614-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765304

RESUMEN

X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.


Asunto(s)
Metales/química , Dispersión de Radiación , Semiconductores , Espectroscopía de Absorción de Rayos X
15.
Phys Chem Chem Phys ; 15(30): 12648-59, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23788236

RESUMEN

Control of the water splitting reaction in the context of natural photosynthesis is considered as a Holy Grail of chemistry, particularly with respect to artificial photosynthesis for a sustainable energy economy. The underlying objective is to build a solar fuel generator which is economically viable and environmentally benign. Hydrogen generation by solar water splitting in photoelectrochemical cells (PEC) is currently experiencing a renaissance, and the search for high performance but low-cost photoelectrode materials is an on-going quest. We present here a photoanode heterostructure of hematite and NiO/α-Ni(OH)2, which is very efficient. We prepared the heterostructure by a "two reactor" hydrothermal modification of a pristine hematite film. The system shows promising current density of 16 mA cm(-2), several times higher than that of the pristine hematite film. In addition, the system shows charge storing capacity once exposed to AM 1.5 simulated sunlight, along with electrochromic behaviour. Interestingly, the water splitting proceeds as a dark reaction after several hours of light exposure. The abrupt increase in current density originates from the oxidized Ni(OH)2 layer which is absent in the case of pn-junction-like devices made by mere deposition of NiO on hematite by thermal annealing. Hematite alone shows no such behaviour. This kind of new PEC electrode offers a low-cost and simple way for the dual purpose applications of water splitting and charge storage.

16.
Phys Chem Chem Phys ; 15(5): 1443-51, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23165453

RESUMEN

Solar hydrogen generation by water splitting in photoelectrochemical cells (PEC) is an appealing technology for a future hydrogen economy. Hematite is a prospective photoanode material in this respect because of its visible light conjugated band gap, its corrosion stability, its environmentally benign nature and its low cost. Its bulk and surface electronic structure has been under scrutiny for many decades and is considered critical for improvement of efficiency. In the present study, hematite films of nominally 500 nm thickness were obtained by dip-coating on fluorine doped tin oxide (FTO) glass slides and then anodised in 1 molar KOH at 500, 600, and 700 mV for 1, 10, 120 and 1440 minutes under dark conditions. X-ray photoelectron spectra recorded at the Fe 3p resonant absorption threshold show that the e(g) transition before the Fermi energy, which is well developed in the pristine hematite film, becomes depleted upon anodisation. The spectral weight of the e(g) peak decreases with the square-root of the anodisation time, pointing to a diffusion controlled process. The speed of this process increases with the anodisation potential, pointing to Arrhenius behaviour. Concomitantly, the weakly developed t(2g) peak intensity becomes enhanced in the same manner. This suggests that the surface of the photoanode contains Fe(2+) species which become oxidized toward Fe(3+) during anodisation. The kinetic behaviour derived from the experimental data suggests that the anodisation forms an electron hole doped film on and below the hematite surface.

17.
Phys Chem Chem Phys ; 15(5): 1417-30, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23089876

RESUMEN

The interaction of metal oxides with gases is very important for the operation of energy devices such as fuel cells and gas sensors, and also relevant for materials synthesis and processing. The electronic transport properties of metal oxides for the aforementioned devices strongly depend on the chemistry of these gases and on the presence or absence of defects on the surface and in the bulk. The Debye screening length is in this respect a material specific property which becomes particularly significant when the material is comprised of nanoparticles. In the present study, poly-crystalline TiO(2), ZnO and SnO(2) nanoparticles were synthesized by a high temperature flame spray combustion process and investigated for their interaction with hydrogen. The chemistry of the reduced and oxidized surfaces of these metal oxides, where the interaction with gases takes place, was investigated in detail with X-ray photoelectron spectroscopy (XPS). The transitions found near E(F) with XPS are consistent with those found by diffuse reflectance spectroscopy (DRS) and were assigned to surface states originating from non-equilibrium oxygen vacancies. We show how the non-stoichiometric character of the metal oxide surface constitutes electronic surface defects, in particular oxygen vacancies which allow for additional transitions near the Fermi energy (E(F)). The concentration of these surface defects can be strongly reduced by thermal after-treatment under air or increased by Ar(+)-sputtering, after which significant spectral features appear near E(F). Such prominent changes are particularly observed for TiO(2) and SnO(2), whereas the stoichiometry of the ZnO surface seems to be less responsive to such reducing and oxidizing conditions. Pronounced changes of the electrical conductivity upon changing from reducing to oxidizing conditions at elevated temperatures were monitored by electrochemical impedance spectroscopy (EIS). The lowering of the potential barrier for the charge transport particularly at lower temperatures already at reducing conditions is confirmed. The impedance response indicates that charge transfer is governed predominantly by one single process, i.e. by interaction of surface-like states localized within depletion layer with gas molecules. This implies that the free charge carriers in the material are determined by the intrinsic property like non-stoichiometry. Gas sensors made from such FSS nanoparticulate metal oxides showed well developed sensing characteristics of the hydrogen sensing at moderate temperatures.

18.
Chemphyschem ; 13(12): 2937-44, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22674527

RESUMEN

Anodization of α-Fe(2)O(3) (hematite) electrodes in alkaline electrolyte under constant potential conditions the electrode surface in a way that an additional current wave occurs in the cyclic voltammogram. The energy position of this current wave is closely below the potential of the anodization treatment. Continued cycling or exchanging of the electrolyte causes depletion of this new feature. The O 1s and Fe 2p core-level X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra of such conditioned hematite exhibit a chemical shift towards higher binding energies, in line with the general perception that anodization generates oxide species with dielectric properties. The valence band XPS and particularly the iron resonant valence band photoemission spectra, however, are shifted towards the opposite direction, that is, towards the Fermi energy, suggesting that hole doping on hematite has taken place during anodization. Quantitative analysis of the Fe 2p resonant valence band photoemission spectra shows that the spectra obtained at the Fe 2p absorption threshold are shifted by virtually the same energy as the anodization potential towards the Fermi energy. The tentative interpretation of this observation is that anodization forms a surface film on the hematite that is specific to the anodization potential.

19.
Part Fibre Toxicol ; 9: 45, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23176191

RESUMEN

BACKGROUND: Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS: WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION: The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Monocitos/efectos de los fármacos , Material Particulado/toxicidad , Humo/efectos adversos , Madera , Células Epiteliales Alveolares/inmunología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/metabolismo , Humanos , Monocitos/inmunología , Compuestos Orgánicos/análisis , Compuestos Orgánicos/toxicidad , Humo/análisis
20.
J Nanosci Nanotechnol ; 12(8): 6401-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22962756

RESUMEN

Nanoscaled Fe2O3 powders as candidates for gas sensing material for hydrogen detection were synthesized by the high temperature flame spray assisted combustion of ferrocene dissolved in benzene. X-ray diffraction (XRD) and selected area electron diffraction (SAED) show that the as prepared nanopowder consists of maghemite (gamma-Fe2O3) with low crystallinity. Thermal post-treatment causes a phase transformation towards hematite (alpha-Fe2O3) accompanied by an increase in the crystallinity. Upon exposure to air and hydrogen at elevated temperatures, both phases show a significant variation of conductivity and activation energy-as evidenced by impedance spectra-and thus a favorable sensor response, surpassing even that of flame-synthesized nanocrystalline tin dioxide. The conductivity has been identified as of electronic origin, affected by trap states located in the region adjacent to grain boundaries. Quantitative analysis of the impedance spectra with equivalent circuits shows that the conductivity is thermally activated and affected by the interaction of hydrogen with the sensor material. The calculated Debye screening length of gamma-Fe2O3 and alpha-Fe2O3 is about 27 nm and 16 nm, respectively, what contributes significantly to the sensitivity of the material. Gamma-Fe2O3 and alpha-Fe2O3 exhibit high sensor response towards hydrogen in a wide concentration range. Gamma-Fe2O3 shows n-type semiconducting behavior up to 573 K. Alpha-Fe2O3 shows p-type semiconducting behavior, as reflected in the dynamic changes of the resistivity. For both sensor materials, 523 K was the optimal operating temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA