Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851405

RESUMEN

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Asunto(s)
Cadherinas , Células Endoteliales , Citoesqueleto de Actina , Actinas/genética , Cadherinas/genética , Uniones Intercelulares , Vinculina , alfa Catenina/genética
2.
Blood ; 136(5): 627-639, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32369573

RESUMEN

Neutrophil extravasation requires opening of the endothelial barrier but does not necessarily cause plasma leakage. Leaks are prevented by contractile actin filaments surrounding the diapedesis pore, keeping this opening tightly closed around the transmigrating neutrophils. We have identified the receptor system that is responsible for this. We show that silencing, or gene inactivation, of endothelial Tie-2 results in leak formation in postcapillary venules of the inflamed cremaster muscle at sites of neutrophil extravasation, as visualized by fluorescent microspheres. Leakage was dependent on neutrophil extravasation, because it was absent upon neutrophil depletion. We identified the Cdc42 GTPase exchange factor FGD5 as a downstream target of Tie-2 that is essential for leakage prevention during neutrophil extravasation. Looking for the Tie-2 agonist and its source, we found that platelet-derived angiopoietin-1 (Angpt1) was required to prevent neutrophil-induced leaks. Intriguingly, blocking von Willebrand factor (VWF) resulted in vascular leaks during transmigration, indicating that platelets interacting with endothelial VWF activate Tie-2 by secreting Angpt1, thereby preventing diapedesis-induced leakiness.


Asunto(s)
Plaquetas , Permeabilidad Capilar/fisiología , Receptor TIE-2/metabolismo , Migración Transendotelial y Transepitelial/fisiología , Factor de von Willebrand/metabolismo , Angiopoyetina 1/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos , Ratones , Ratones Endogámicos C57BL
3.
EMBO Rep ; 20(7): e47046, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267715

RESUMEN

Inhibition of VE-PTP, an endothelial receptor-type tyrosine phosphatase, triggers phosphorylation of the tyrosine kinase receptor Tie-2, which leads to the suppression of inflammation-induced vascular permeability. Analyzing the underlying mechanism, we show here that inhibition of VE-PTP and activation of Tie-2 induce tyrosine phosphorylation of FGD5, a GTPase exchange factor (GEF) for Cdc42, and stimulate its translocation to cell contacts. Interfering with the expression of FGD5 blocks the junction-stabilizing effect of VE-PTP inhibition in vitro and in vivo. Likewise, FGD5 is required for strengthening cortical actin bundles and inhibiting radial stress fiber formation, which are each stimulated by VE-PTP inhibition. We identify Y820 of FGD5 as the direct substrate for VE-PTP. The phosphorylation of FGD5-Y820 is required for the stabilization of endothelial junctions and for the activation of Cdc42 by VE-PTP inhibition but is dispensable for the recruitment of FGD5 to endothelial cell contacts. Thus, activation of FGD5 is a two-step process that comprises membrane recruitment and phosphorylation of Y820. These steps are necessary for the junction-stabilizing effect stimulated by VE-PTP inhibition and Tie-2 activation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Uniones Intercelulares/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Citoesqueleto de Actina/metabolismo , Secuencias de Aminoácidos , Animales , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Ratones , Mutación , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo
4.
Nat Cell Biol ; 22(7): 828-841, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541879

RESUMEN

Mutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging. Deregulation of the epigenetic landscape induced by the loss of the NSL complex in neural cells causes widespread metabolic defects, including an accumulation of free long-chain fatty acids (LCFAs). Free LCFAs induce a Toll-like receptor 4 (TLR4)-NFκB-dependent pro-inflammatory signalling cascade in neighbouring vascular pericytes that is rescued by TLR4 inhibition. Pericytes display functional changes in response to LCFA-induced activation that result in vascular breakdown. Our work establishes that neurovascular function is determined by the neural metabolic environment.


Asunto(s)
Núcleo Celular/patología , Cromatina/metabolismo , Histona Acetiltransferasas/fisiología , Inflamación/patología , Neovascularización Patológica/patología , Neuronas/patología , Pericitos/patología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Ácidos Grasos/metabolismo , Femenino , Feto/citología , Feto/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pericitos/metabolismo
5.
FEBS J ; 285(9): 1635-1652, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29542240

RESUMEN

Focal adhesions (FAs) are subcellular regions at the micrometer scale that link the cell to the surrounding microenvironment and control vital cell functions. However, the spatial architecture of FAs remains unclear at the nanometer scale. We used two-color and three-color super-resolution stimulated emission depletion microscopy to determine the spatial distributions and co-localization of endogenous FA components in fibroblasts. Our data indicate that adhesion proteins inside, but not outside, FAs are organized into nanometer size units of multi-protein assemblies. The loss of contractile force reduced the nanoscale co-localization between different types of proteins, while it increased this co-localization between markers of the same type. This suggests that actomyosin-dependent force exerts a nonrandom, specific, control of the localization of adhesion proteins within cell-matrix adhesions. These observations are consistent with the possibility that proteins in cell-matrix adhesions are assembled in nanoscale particles, and that force regulates the localization of the proteins therein in a protein-specific manner. This detailed knowledge of how the organization of FA components at the nanometer scale is linked to the capacity of the cells to generate contractile forces expands our understanding of cell adhesion in health and disease.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Proteínas Contráctiles/fisiología , Proteínas de la Matriz Extracelular/fisiología , Adhesiones Focales/química , Complejos Multiproteicos/ultraestructura , Células 3T3 , Actomiosina/fisiología , Animales , Moléculas de Adhesión Celular/análisis , Línea Celular , Proteínas de la Matriz Extracelular/análisis , Fibroblastos , Adhesiones Focales/ultraestructura , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Ratones , Microscopía Fluorescente , Complejos Multiproteicos/química , Estrés Mecánico
6.
FEBS J ; 283(5): 882-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26756570

RESUMEN

Colocalization analyses of fluorescence images are extensively used to quantify molecular interactions in cells. In recent years, fluorescence nanoscopy has approached resolutions close to molecular dimensions. However, the extent to which image resolution influences different colocalization estimates has not been systematically investigated. In this work, we applied simulations and resolution-tunable stimulated emission depletion microscopy to evaluate how the resolution, molecular density and label size of targeted molecules influence estimates of the most commonly used colocalization algorithms (Pearson correlation coefficient, Manders' M1 and M2 coefficients), as well as estimates by the image cross-correlation spectroscopy method. We investigated the practically measureable extents of colocalization for stimulated emission depletion microscopy with positive and negative control samples with an aim to identifying the strengths and weaknesses of nanoscopic techniques for colocalization studies. At a typical optical resolution of a confocal microscope (200-300 nm), our results indicate that the extent of colocalization is typically overestimated by the tested algorithms, especially at high molecular densities. Only minor effects of this kind were observed at higher resolutions (< 60 nm). By contrast, underestimation of colocalization may occur if the resolution is close to the size of the label/affinity molecules themselves. To suppress false positives at confocal resolutions and high molecular densities, we introduce a statistical variant of Costes' threshold searching algorithm, used in combination with correlation-based methods like the Pearson coefficient and the image cross-correlation spectroscopy approach, to set intensity thresholds separating background noise from signals.


Asunto(s)
Algoritmos , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Complejo Antígeno-Anticuerpo , Línea Celular , Color , Simulación por Computador , Reacciones Falso Positivas , Fibroblastos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Inmunoglobulina G/química , Microscopía Confocal , Modelos Estadísticos , Distribución Normal , Reproducibilidad de los Resultados , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA