Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002310, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721958

RESUMEN

Decline of mitochondrial function is a hallmark of cellular aging. To counteract this process, some cells inherit mitochondria asymmetrically to rejuvenate daughter cells. The molecular mechanisms that control this process are poorly understood. Here, we made use of matrix-targeted D-amino acid oxidase (Su9-DAO) to selectively trigger oxidative damage in yeast mitochondria. We observed that dysfunctional mitochondria become fusion-incompetent and immotile. Lack of bud-directed movements is caused by defective recruitment of the myosin motor, Myo2. Intriguingly, intact mitochondria that are present in the same cell continue to move into the bud, establishing that quality control occurs directly at the level of the organelle in the mother. The selection of healthy organelles for inheritance no longer works in the absence of the mitochondrial Myo2 adapter protein Mmr1. Together, our data suggest a mechanism in which the combination of blocked fusion and loss of motor protein ensures that damaged mitochondria are retained in the mother cell to ensure rejuvenation of the bud.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , División Celular Asimétrica , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Miosinas/metabolismo , Proteínas Mitocondriales/metabolismo
2.
EMBO J ; 40(16): e107913, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34191328

RESUMEN

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Línea Celular , Citosol/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Saccharomyces cerevisiae
3.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392378

RESUMEN

Quantum-key-distribution (QKD) networks are gaining importance and it has become necessary to analyze the most appropriate methods for their long-distance interconnection. In this paper, four different methods of interconnecting remote QKD networks are proposed. The methods are used to link three different QKD testbeds in Europe, located in Berlin, Madrid, and Poznan. Although long-distance QKD links are only emulated, the methods used can serve as a blueprint for the secure interconnection of distant QKD networks in the future. Specifically, the presented approaches combine, in a transparent way, different fiber and satellite physical media, as well as common standards of key delivery interfaces. The testbed interconnections are designed to increase the security by utilizing multipath techniques and multiple hybridizations of QKD and post-quantum cryptography (PQC) algorithms.

4.
Beilstein J Org Chem ; 20: 540-551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440172

RESUMEN

The present work covers novel herbicidal lead structures that contain a 2,3-dihydro[1,3]thiazolo[4,5-b]pyridine scaffold as structural key feature carrying a substituted phenyl side chain. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity against commercially important weeds in broadacre crops, e.g., wheat and corn. The desired substituted 2,3-dihydro[1,3]thiazolo[4,5-b]pyridines were prepared via an optimized BH3-mediated reduction involving tris(pentafluorophenyl)borane as a strong Lewis acid. Remarkably, greenhouse trials showed that some of the target compounds outlined herein display promising control of grass weed species in preemergence application, combined with a dose response window that enables partial selectivity in certain crops.

5.
Rev Med Virol ; 32(2): e2272, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34191369

RESUMEN

SARS-CoV-2 continues to leave its toll on global health and the economy. Management of the pandemic will rely heavily on the degree of adaptive immunity persistence following natural SARS-CoV-2 infection. Along with the progression of the pandemic, more literature on the persistence of the SARS-CoV-2-specific antibody response is becoming available. Here, we summarize findings on the persistence of the humoral, including neutralizing antibody, response at three to eight months post SARS-CoV-2 infection in non-pregnant adults. While the comparability of the literature is limited, findings on the detectability of immunoglobulin G class of antibodies (IgG) were most consistent and were reported in most studies to last for six to eight months. Studies investigating the response of immunoglobins M and A (IgM, IgA) were limited and reported mixed results, in particular, for IgM. The majority of studies observed neutralizing antibodies at all time points tested, which in some studies lasted up to eight months. The presence of neutralizing antibodies has been linked to protection from re-infection, suggesting long-term immunity to SARS-CoV-2. These neutralizing capacities may be challenged by emerging virus variants, but mucosal antibodies as well as memory B and T cells may optimize future immune responses. Thus, further longitudinal investigation of PCR-confirmed seropositive individuals using sensitive assays is warranted to elucidate the nature and duration of a more long-term humoral response.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , SARS-CoV-2
6.
Hum Mol Genet ; 27(9): 1593-1607, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474575

RESUMEN

TDP-43 is a nuclear RNA-binding protein whose cytoplasmic accumulation is the pathological hallmark of amyotrophic lateral sclerosis (ALS). For a better understanding of this devastating disorder at the molecular level, it is important to identify cellular pathways involved in the clearance of detrimental TDP-43. Using a yeast model system, we systematically analyzed to which extent TDP-43-triggered cytotoxicity is modulated by conserved lysosomal clearance pathways. We observed that the lysosomal fusion machinery and the endolysosomal pathway, which are crucial for proper lysosomal function, were pivotal for survival of cells exposed to TDP-43. Interestingly, TDP-43 itself interfered with these critical TDP-43 clearance pathways. In contrast, autophagy played a complex role in this process. It contributed to the degradation of TDP-43 in the absence of endolysosomal pathway activity, but its induction also enhanced cell death. Thus, TDP-43 interfered with lysosomal function and its own degradation via lysosomal pathways, and triggered lethal autophagy. We propose that these effects critically contribute to cellular dysfunction in TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Lisosomas/metabolismo , Autofagia/fisiología
7.
EMBO J ; 32(23): 3041-54, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24129513

RESUMEN

Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.


Asunto(s)
Apoptosis , Endodesoxirribonucleasas/metabolismo , Neuroblastoma/patología , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/patología , alfa-Sinucleína/metabolismo , Anciano , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Dopamina/farmacología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Endodesoxirribonucleasas/genética , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/citología , Estrés Oxidativo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sustancia Negra/metabolismo , Células Tumorales Cultivadas , alfa-Sinucleína/genética
8.
Trends Biochem Sci ; 35(3): 135-44, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19926288

RESUMEN

Neurodegeneration is characterized by the disease-specific loss of neuronal activity, culminating in the irreversible destruction of neurons. Neuronal cell death can proceed via distinct subroutines such as apoptosis and necrosis, but the underlying molecular mechanisms remain poorly understood. Saccharomyces cerevisiae is an established model for programmed cell death, characterized by distinct cell death pathways conserved from yeast to mammals. Recently, yeast models for several major classes of neurodegeneration, namely alpha-synucleinopathies, polyglutamine disorders, beta-amyloid diseases, tauopathies, and TDP-43 proteinopathies, have been established. Heterologous expression of the human proteins implicated in these disorders has unraveled important insights in their detrimental function, pointing to ways in which yeast might advance the mechanistic dissection of cell death pathways relevant for human neurodegeneration.


Asunto(s)
Muerte Celular/fisiología , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Saccharomyces cerevisiae/fisiología , Animales , Humanos , Necrosis/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
FEMS Yeast Res ; 14(1): 109-18, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24164772

RESUMEN

For millennia, yeast has been exploited to obtain fermentation products, such as foods and beverages. For c. 50 years, yeast has been an established model organism for basic and applied research, and more specifically, for c. 15 years, this unicellular organism has been applied to dissect molecular mechanisms of cell aging and programmed cell death. In this review, we present an overview of approaches to study cell aging and death in yeast, including lifespan assessments, calorie restriction, cell viability, survival, and death markers.


Asunto(s)
Muerte Celular , Saccharomyces cerevisiae/fisiología , Técnicas Microbiológicas/métodos , Micología/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
10.
Anal Chem ; 85(6): 3309-17, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23394260

RESUMEN

Rapid and efficient quality control according to the public authority regulations is mandatory to guarantee safety of the pharmaceuticals and to save resources in the pharmaceutical industry. In the case of so-called "grandfather products" like the synthetic thyroid hormone thyroxine, strict regulations enforce a detailed chemical analysis in order to characterize potentially toxic or pharmacologically relevant impurities. We report a straightforward workflow for the comprehensive impurity profiling of synthetic thyroid hormones and impurities employing ultrahigh-performance liquid chromatography (UHPLC) hyphenated to high-resolution mass spectrometry (HRMS). Five different batches of synthetic thyroxin were analyzed resulting in the detection of 71 impurities within 3 min total analysis time. Structural elucidation of the compounds was accomplished via a combination of accurate mass measurements, computer based calculations of molecular formulas, multistage high-resolution mass spectrometry (HRMS(n)), and nuclear magnetic resonance spectroscopy, which enabled the identification of 71 impurities, of which 47 have been unknown so far. Thirty of the latter were structurally elucidated, including products of deiodination, aliphatic chain oxidation, as well as dimeric compounds as new class of thyroid hormone derivatives. Limits of detection for the thyroid compounds were in the 6 ng/mL range for negative electrospray ionization mass spectrometric detection in full scan mode. Within day and day-to-day repeatabilities of retention times and peak areas were below 0.5% and 3.5% R.SD. The performance characteristics of the method in terms of robustness and information content clearly show that UHPLC-HRMS is adequate for the rapid and reliable detection, identification, and semiquantitative determination of trace levels of impurities in synthetic pharmaceuticals.


Asunto(s)
Contaminación de Medicamentos , Espectrometría de Masas/métodos , Tiroxina/análisis , Cromatografía Líquida de Alta Presión/métodos , Factores de Tiempo
11.
Opt Express ; 21(20): 23950-62, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104306

RESUMEN

The interference between two spectral lines of the frequency comb of a fiber femtosecond laser is used to generate millimeter-wave and terahertz tones. The two lines are selected by stimulated Brillouin scattering (SBS) amplification. All other modes are strongly rejected based on polarization discrimination, using the polarization-pulling effect that is associated with SBS. The inherent high spectral quality of a femtosecond fiber laser comb allows generation of millimeter- and terahertz waves with linewidths below 1 Hz, and a phase noise of -105 dBc/Hz at 10 kHz offset. The generation, free-space transmission and detection of continuous waves at 1 THz are demonstrated as well. Lastly, the generated millimeter-wave carriers are modulated by 40 Gbit/s data. The entire system consists of a fiber laser and standard equipment of optical telecommunications. Besides metrology, spectroscopy and astronomy, the method can be utilized for the emergent field of wireless millimeter-wave and THz-communications at ultra-high data rates.

12.
J Agric Food Chem ; 71(47): 18212-18226, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37677080

RESUMEN

In the search for new chemical entities that can control resistant weeds by addressing novel modes of action (MoAs), we were interested in further exploring a compound class that contained a 1,8-naphthyridine core. By leveraging scaffold hopping methodologies, we were able to discover the new thiazolopyridine compound class that act as potent herbicidal molecules. Further biochemical investigations allowed us to identify that the thiazolopyridines inhibit acyl-acyl carrier protein (ACP) thioesterase (FAT), with this being further confirmed via an X-ray cocrystal structure. Greenhouse trials revealed that the thiazolopyridines display excellent control of grass weed species in pre-emergence application coupled with dose response windows that enable partial selectivity in certain crops.


Asunto(s)
Herbicidas , Herbicidas/química , Malezas/metabolismo , Tioléster Hidrolasas/metabolismo , Productos Agrícolas/metabolismo , Control de Malezas/métodos
13.
J Biol Chem ; 286(22): 19958-72, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21471218

RESUMEN

Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stress, apoptosis, and necrosis. Cytotoxicity was dose- and age-dependent and was potentiated upon expression of disease-associated variants. TDP-43 was localized in perimitochondrial aggregate-like foci, which correlated with cytotoxicity. Although the deleterious effects of TDP-43 were significantly decreased in cells lacking functional mitochondria, cell death depended neither on the mitochondrial cell death proteins apoptosis-inducing factor, endonuclease G, and cytochrome c nor on the activity of cell death proteases like the yeast caspase 1. In contrast, impairment of the respiratory chain attenuated the lethality upon TDP-43 expression with a stringent correlation between cytotoxicity and the degree of respiratory capacity or mitochondrial DNA stability. Consistently, an increase in the respiratory capacity of yeast resulted in enhanced TDP-43-triggered cytotoxicity, oxidative stress, and cell death markers. These data demonstrate that mitochondria and oxidative stress are important to TDP-43-triggered cell death in yeast and may suggest a similar role in human TDP-43 pathologies.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/biosíntesis , Mitocondrias/metabolismo , Estrés Oxidativo , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteinopatías TDP-43/metabolismo , Muerte Celular/genética , ADN de Hongos/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Mitocondrias/genética , Consumo de Oxígeno/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología
14.
Biomedicines ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35885007

RESUMEN

Extracellular plaques composed of the hydrophobic peptide amyloid-ß and intraneuronal accumulation of the hyperphosphorylated protein tau (p-tau) are pathological hallmarks found in the brains of most people affected by Alzheimer's disease (AD). In Parkinson's disease (PD), Lewy bodies, i.e., intraneuronal protein deposits comprising the protein α-synuclein, are a typical disease feature. As these hallmarks located in the brain are hardly traceable, reliable biomarkers from easily accessible body fluids are key for accurate diagnosis. The aim of the present work was to review the available literature regarding potential biomarkers of AD and PD in the saliva. The databases PubMed, Google Scholar, LILACS, LIVIVO, VHL regional portal, Cochrane Library, eLIBRARY, and IOS Press were consulted for the literature search. Screening of titles and abstracts followed the PRISMA guidelines, while data extraction and the assessment of full texts were carried out in accordance with the Newcastle-Ottawa Scale assessment. The review shows significant increases in levels of the amyloid-ß Aß1-42 and elevated p-tau to total tau (t-tau) ratios in salivary samples of AD patients, in comparison with healthy controls. In PD patients, levels of α-synuclein in salivary samples significantly decreased compared to healthy controls, whereas oligomeric α-synuclein and the ratio of oligomeric α-synuclein to total α-synuclein markedly increased. Salivary biomarkers represent a promising diagnostic tool for neurodegenerative diseases. Further high-quality case-control studies are needed to substantiate their accuracy.

15.
PLoS One ; 17(7): e0271382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895668

RESUMEN

The Lower Austrian Wachau region was an early COVID-19 hotspot of infection. As previously reported, in June 2020, after the first peak of infections, we determined that 8.5% and 9.0% of the participants in Weißenkirchen and surrounding communities in the Wachau region were positive for immunoglobulin G (IgG) and immunoglobulin A (IgA) antibodies against the receptor-binding domain of the spike protein of SARS-CoV-2, respectively. Here, we present novel data obtained eight months later (February 2021) from Weißenkirchen, after the second peak of infection, with 25.0% (138/552) and 23.6% (130/552) of participants that are positive for IgG and IgA, respectively. In participants with previous IgG/IgA positivity (June 2020), we observed a 24% reduction in IgG levels, whereas the IgA levels remained stable in February 2021. This subgroup was further analyzed for SARS-CoV-2 induced T cell activities. Although 76% (34/45) and 76% (34/45) of IgG positive and IgA positive participants, respectively, showed specific T cell activities (upon exposure to SARS-CoV-2 spike protein-derived peptides), those were not significantly correlated with the levels of IgG or IgA. Thus, the analyses of antibodies cannot surrogate the measurement of T cell activities. For a comprehensive view on SARS-CoV-2-triggered immune responses, the measurement of different classes of antibodies should be complemented with the determination of T cell activities.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Austria/epidemiología , COVID-19/epidemiología , COVID-19/inmunología , Humanos , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
16.
EMBO Mol Med ; 14(5): e13952, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373908

RESUMEN

Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death. We demonstrate that Ydj1/DnaJA1 physically interacts with Abeta42 (in yeast and mouse), stabilizes Abeta42 oligomers, and mediates their translocation to mitochondria. Consequently, deletion of YDJ1 strongly reduces co-purification of Abeta42 with mitochondria and prevents Abeta42-induced mitochondria-dependent cell death. Consistently, purified DnaJ chaperone delays Abeta42 fibrillization in vitro, and heterologous expression of human DnaJA1 induces formation of Abeta42 oligomers and their deleterious translocation to mitochondria in vivo. Finally, downregulation of the Ydj1 fly homologue, Droj2, improves stress resistance, mitochondrial morphology, and memory performance in a Drosophila melanogaster AD model. These data reveal an unexpected and detrimental role for specific HSP40s in promoting hallmarks of Abeta42 toxicity.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Saccharomyces cerevisiae , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Drosophila melanogaster/metabolismo , Proteínas del Choque Térmico HSP40/genética , Ratones , Chaperonas Moleculares , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochem Soc Trans ; 39(5): 1520-6, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21936845

RESUMEN

Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The baker's yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.


Asunto(s)
Muerte Celular/fisiología , Senescencia Celular/fisiología , Mitocondrias/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Eliminación de Gen , Fusión de Membrana , Mitocondrias/patología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo
18.
Biomedicines ; 9(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918437

RESUMEN

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.

19.
Front Med (Lausanne) ; 8: 653630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222275

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic recently. The prevalence and persistence of antibodies following a peak SARS-CoV-2 infection provides insights into the potential for some level of population immunity. In June 2020, we succeeded in testing almost half of the population of an Austrian town with a higher incidence of COVID-19 infection. We performed a follow-up study to reassess the prevalence of SARS-CoV-2-specific IgA and IgG antibodies with 68 participants of the previous study. We found that the prevalence of IgG or IgA antibodies remained remarkably stable, with 84% of our cohort prevailing SARS-CoV-2-specific antibodies (only a slight decrease from 93% 4 months before). In most patients with confirmed COVID-19 seroconversion potentially provides immunity to reinfection. Our results suggest a stable antibody response observed for at least 6 months post-infection with implications for developing strategies for testing and protecting the population.

20.
Front Med (Lausanne) ; 8: 632942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109189

RESUMEN

Background: Since December 2019 the novel coronavirus (SARS-CoV-2) is the center of global attention due to its rapid transmission and toll on health care systems and global economy. Population-based serosurveys measuring antibodies for SARS-CoV-2 provide one method for estimating previous infection rates including the symptom-free courses of the disease and monitoring the progression of the epidemic. Methods: In June 2020 we succeeded in testing almost half of the population of an Austrian township (1,359 inhabitants) with a reported higher incidence for COVID-19 infections (17 PCR positive cases have been officially reported until the date of sample collection, i.e., 1.2% of the total population). We determined the prevalence of SARS-CoV-2-specific antibodies in this population, factors affecting, and symptoms correlated with prior infection. Antibodies were determined using a CE-certified quality-controlled ELISA test for SARS-CoV-2-specific IgG and IgA antibodies. Results: We found a high prevalence of 9% positive antibodies among the town population in comparison to 6% of the neighboring villages. This was considerably higher than the officially known RT-PCR-approved COVID-19 cases (1.2%) in the town population. Twenty percent of SARS-CoV-2-antibody positive cases declared being asymptomatic in a questionnaire. On the other hand, we identified six single major symptoms, including anosmia/ageusia, weight loss, anorexia, general debility, dyspnea, and fever, and especially their combination to be of high prognostic value for predicting SARS-CoV-2 infection in a patient. Conclusions: This population study demonstrated a high prevalence of antibodies to SARS-CoV-2 as a marker of past infections in an Austrian township. Several symptoms revealed a diagnostic value especially in combination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA