Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 26(9): 11366-11392, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716058

RESUMEN

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with a relatively low quality (Q) factor and a longer cavity with a high Q. We use five state-of-the-art numerical simulation techniques to compute the cavity Q factor and the resonance wavelength λ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.

2.
Opt Lett ; 42(15): 2866-2869, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957194

RESUMEN

Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a photonic crystal slab. In this case, all three bands exhibit a bound state in the continuum in close proximity of the Γ point. These results may lead to new designs of small photonic-crystal-based lasers exhibiting high-quality factors.

3.
J Opt Soc Am A Opt Image Sci Vis ; 31(9): 1912-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401428

RESUMEN

In order to obtain a benchmark for electromagnetic energy harvesting, we investigate the maximum absorption efficiency by a magneto-dielectric homogeneous sphere illuminated by a plane wave, and we arrive at several novel results. For electrically small spheres we show that the optimal relative permeability and permeability of materials where ϵ(r)', µ(r)'≥1 is (1+i3) independent of sphere size, while that of metamaterials is (-2+iδ), where the imaginary part δ decreases strongly with decreasing sphere size. For larger spheres we show that while maximum absorption efficiency occurs at the resonances of the spherical modes, there exists a wide plateau of high absorption efficiency when material intrinsic impedance is constant; in the case of free-space intrinsic impedance and electrical radius κ=1, the absorption efficiency becomes 2.8. The investigation is analytic/numerical and based on the Lorenz-Mie theory combined with the optical theorem.

4.
Opt Express ; 17(18): 16059-72, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19724606

RESUMEN

The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders. The dispersion and loss, inevitably present in realistic metamaterials, are modeled by the Drude and Lorentz dispersion models to study the bandwidth properties of the resonances.

5.
Materials (Basel) ; 4(1): 117-130, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28879980

RESUMEN

Sub-wavelength resonances known to exist in isolated metamaterial-based structures of circular cylindrical shape are investigated with the purpose of determining whether the individual resonances are retained when several of such resonant structures are grouped to form a new structure. To this end, structures consisting of 1, 2 and 4 sets of metamaterial-based concentric cylinders excited by an electric line current are analyzed numerically. It is demonstrated that these structures recover the resonances of the individual structures even when the cylinders are closely spaced and the new structure is thus electrically small. The investigation is conducted through a detailed analysis of the electric near-field distribution as well as the radiation resistance in those cases where the individual structures are made of simple dielectric materials in conjunction with simple, but lossy and dispersive, metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA