Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Chem Chem Phys ; 24(42): 25753-25766, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36128981

RESUMEN

This joint experimental-theoretical spectroscopy study of the fullerene derivative PC60BM ([6,6]-phenyl-C60-butyric acid methyl ester) aims to improve the understanding of the effect of photooxidation on its electronic structure. We have studied spin-coated thin films of PC60BM by X-ray Photoelectron Spectroscopy (XPS), Near-edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR), before and after intentional exposure to simulated sunlight in air for different lengths of time. The π* resonance in the C1s NEXAFS spectrum was found to be a very sensitive probe for the early changes to the fullerene cage, while FTIR spectra, in combination with O1s NEXAFS spectra, enabled the identification of the oxidation products. The changes observed in the spectra obtained by these complementary methods were compared with the corresponding Density Functional Theory (DFT) calculated single-molecule spectra of a large set of in silico generated oxidation products of PC60BM where oxygen atoms were attached to the C60 cage. This comparison confirms that photooxidation of PC60BM disrupts the conjugation of the fullerene cage by a transition from sp2 to sp3-hybridized carbon and causes the formation of several oxidation products, earlier proposed for C60. The agreement between experimental and calculated IR spectra suggests moreover the presence of dicarbonyl and anhydride structures on the fullerene cage, in combination with cage opening at the adsorption site. By including PC60BM with physisorbed O2 molecules on the cage in our theoretical description in order to model oxygen diffused through the film, the experimental O1s XPS and O1s NEXAFS spectra could be reproduced.


Asunto(s)
Fulerenos , Espectroscopía de Fotoelectrones , Adsorción , Oxígeno/química , Rayos X
2.
J Phys Chem A ; 126(9): 1496-1503, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35213156

RESUMEN

We demonstrate site-specific X-ray induced fragmentation across the sulfur L-edge of protonated cystine, the dimer of the amino acid cysteine. Ion yield NEXAFS were performed in the gas phase using electrospray ionization (ESI) in combination with an ion trap. The interpretation of the sulfur L-edge NEXAFS spectrum is supported by Restricted Open-Shell Configuration Interaction (ROCIS) calculations. The fragmentation pathway of triply charged cystine ions was modeled by Molecular Dynamics (MD) simulations. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons. The disulfide bridge breaks for resonant excitation at lower photon energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments initially formed subsequently break into smaller fragments.


Asunto(s)
Cisteína , Cistina , Cisteína/química , Cistina/química , Electrones , Iones , Espectrometría de Masa por Ionización de Electrospray , Rayos X
3.
Small ; 15(19): e1900078, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30957970

RESUMEN

Using the MoS2 -WTe2 heterostructure as a model system combined with electrochemical microreactors and density function theory calculations, it is shown that heterostructured contacts enhance the hydrogen evolution reaction (HER) activity of monolayer MoS2 . Two possible mechanisms are suggested to explain this enhancement: efficient charge injection through large-area heterojunctions between MoS2 and WTe2 and effective screening of mirror charges due to the semimetallic nature of WTe2 . The dielectric screening effect is proven minor, probed by measuring the HER activity of monolayer MoS2 on various support substrates with dielectric constants ranging from 4 to 300. Thus, the enhanced HER is attributed to the increased charge injection into MoS2 through large-area heterojunctions. Based on this understanding, a MoS2 /WTe2 hybrid catalyst is fabricated with an HER overpotential of -140 mV at 10 mA cm-2 , a Tafel slope of 40 mV dec-1 , and long stability. These results demonstrate the importance of interfacial design in transition metal dichalcogenide HER catalysts. The microreactor platform presents an unambiguous approach to probe interfacial effects in various electrocatalytic reactions.

4.
Phys Chem Chem Phys ; 21(28): 15478-15486, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31259327

RESUMEN

Complex chemical and biochemical systems are susceptible to damage from ionising radiation. However, questions remain over the extent to which such damage is influenced by the nature of the surrounding chemical environment, which can consist of both hydrophobic and hydrophilic domains. To gain fundamental insight into the first crucial mechanistic steps of radiation damage in such systems, we need to understand the initial radiation response, i.e. dynamics occurring on the same timescale as electronic relaxation, which occur in these different environments. Amphiphilic molecules contain both hydrophobic and hydrophilic domains, but the propensity for charge delocalisation and proton dynamics to occur in these different domains has been largely unexplored so far. Here, we present carbon and oxygen 1s Auger spectra for liquid methanol, one of the simplest amphiphilic molecules, as well as its fully deuterated equivalent d4-methanol, in order to explore X-ray induced charge delocalisation and proton dynamics occurring on the few femtosecond timescale. Unexpectedly, we find a similar propensity for proton dynamics to occur at both the carbon and oxygen site within the lifetime of the core hole. Our results could serve as a model for decay processes that are likely to occur in other more complex amphiphilic systems.


Asunto(s)
Metanol/química , Metanol/efectos de la radiación , Rayos X , Carbono/química , Oxígeno/química , Protones
5.
J Phys Chem A ; 123(14): 3214-3222, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30892039

RESUMEN

It is established that density functional theory (DFT) + U is a better choice compared to DFT for describing the correlated electron metal center in organometallics. The value of the Hubbard U parameter may be determined from linear response, either by considering the response of the metal site alone or by additionally considering the response of other sites in the compound. We analyze here in detail the influence of ligand shells of increasing size on the U parameter calculated from the linear response for five transition metal phthalocyanines. We show that the calculated multiple-site U is larger than the single-site U by as much as 1 eV and the ligand atoms that are mainly responsible for this difference are the isoindole nitrogen atoms directly bonded to the central metal atom. This suggests that a different U value may be required for computations of chemisorbed molecules compared to physisorbed and gas-phase cases.

6.
Chemistry ; 24(53): 14198-14206, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30009392

RESUMEN

The effect of intermolecular H-bonding interactions on the local electronic structure of N-containing functional groups (amino group and pyridine-like N) that are characteristic of polymeric carbon nitride materials p-CN(H), a new class of metal-free organophotocatalysts, was investigated. Specifically, the melamine molecule, a building block of p-CN(H), was characterized by X-ray photoelectron (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The molecule was studied as a noninteracting system in the gas phase and in the solid state within a H-bonded network. With the support of DFT simulations of the spectra, it was found that the H-bonds mainly affect the N 1s level of the amino group, leaving the N 1s level of the pyridine-like N mostly unperturbed. This is responsible for a reduction of the chemical shift between the two XPS N 1s levels relative to free melamine. Consequently, N K-edge NEXAFS resonances involving the amino N 1s level also shift to lower photon energies. Moreover, the solid-state absorption spectra showed significant modification/quenching of resonances related to transitions from the amino N 1s level to σ* orbitals involving the NH2 termini.

7.
J Chem Phys ; 147(4): 044301, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28764387

RESUMEN

We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

8.
J Chem Phys ; 144(2): 024702, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26772582

RESUMEN

The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon's excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.

9.
J Chem Phys ; 142(5): 054306, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25662644

RESUMEN

Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C60. One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C60 molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate.

10.
J Chem Phys ; 142(7): 074305, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25702013

RESUMEN

In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction with hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.


Asunto(s)
Compuestos de Bifenilo/química , Gases/química , Carbono/química , Simulación por Computador , Modelos Químicos , Estructura Molecular , Naftalenos/química , Espectroscopía de Fotoelectrones , Espectroscopía de Absorción de Rayos X
11.
J Phys Chem A ; 118(5): 927-32, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24428172

RESUMEN

To shed light on the metal 3d electronic structure of manganese phthalocyanine, so far controversial, we performed photoelectron measurements both in the gas phase and as thin film. With the purpose of explaining the experimental results,three different electronic configurations close in energy to one another were studied by means of density functional theory. The comparison between the calculated valence band density of states and the measured spectra revealed that in the gas phase the molecules exhibit a mixed electronic configuration, while in the thin film, manganese phthalocyanine finds itself in the theoretically computed ground state, namely, the b1(2g)e3(g)a1(1g)b0(1g) electronic configuration.

12.
J Chem Phys ; 140(12): 124711, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24697474

RESUMEN

We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 µB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV.

13.
J Am Chem Soc ; 134(41): 17157-67, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23009067

RESUMEN

The Mn 1s near-edge absorption fine structure (NEXAFS) has been computed by means of transition-state gradient-corrected density functional theory (DFT) on four Mn(4)Ca clusters modeling the successive S(0) to S(3) steps of the oxygen-evolving complex (OEC) in photosystem II (PSII). The model clusters were obtained from a previous theoretical study where they were determined by energy minimization. They are composed of Mn(III) and Mn(IV) atoms, progressing from Mn(III)(3)Mn(IV) for S(0) to Mn(III)(2)Mn(IV)(2) for S(1) to Mn(III)Mn(IV)(3) for S(2) to Mn(IV)(4) for S(3), implying an Mn-centered oxidation during each step of the photosynthetic oxygen evolution. The DFT simulations of the Mn 1s absorption edge reproduce the experimentally measured curves quite well. By the half-height method, the theoretical IPEs are shifted by 0.93 eV for the S(0) → S(1) transition, by 1.43 eV for the S(1) → S(2) transition, and by 0.63 eV for the S(2) → S(3) transition. The inflection point energy (IPE) shifts depend strongly on the method used to determine them, and the most interesting result is that the present clusters reproduce the shift in the S(2) → S(3) transition obtained by both the half-height and second-derivative methods, thus giving strong support to the previously suggested structures and assignments.


Asunto(s)
Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Agua/metabolismo , Catálisis , Manganeso/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Teoría Cuántica , Agua/química , Espectroscopía de Absorción de Rayos X
14.
J Phys Condens Matter ; 34(21)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35245912

RESUMEN

We performed a spectroscopic study on them-MTDATA (donor) and PPT (acceptor) molecular vertical heterostructure. The electronic properties of the donor/acceptor interface have been comprehensively characterized by synchrotron radiation-based photoelectron spectroscopy and near-edge x-ray absorption fine structure. The spectroscopic results reveal the existence of new hybridization states in the original molecular energy gap, likely attributed to the interaction between the donor and the acceptor molecules at the interface. Such hybridized states can have a significant impact on the charge transport in organic electronic devices based on donor-acceptor molecules and can explain the increased efficiency of device using such molecules.

15.
J Phys Chem C Nanomater Interfaces ; 126(3): 1635-1643, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35116088

RESUMEN

In this article, we analyze the electronic structure modifications of triphenylamine (TPA), a well-known electron donor molecule widely used in photovoltaics and optoelectronics, upon deposition on Au(111) at a monolayer coverage. A detailed study was carried out by synchrotron radiation-based photoelectron spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, scanning tunneling microscopy (STM), and ab initio calculations. We detect a new feature in the pre-edge energy region of the N K-edge NEXAFS spectrum that extends over 3 eV, which we assign to transitions involving new electronic states. According to our calculations, upon adsorption, a number of new unoccupied electronic states fill the energy region between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the free TPA molecule and give rise to the new feature in the pre-edge region of the NEXAFS spectrum. This finding highlights the occurrence of a considerable modification of the electronic structure of TPA. The appearance of new states in the HOMO-LUMO gap of TPA when adsorbed on Au(111) has crucial implications for the design of molecular nanoelectronic devices based on similar donor systems.

16.
J Chem Phys ; 134(7): 074312, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21341849

RESUMEN

The electronic structure of iron phthalocyanine (FePc) in the valence region was examined within a joint theoretical-experimental collaboration. Particular emphasis was placed on the determination of the energy position of the Fe 3d levels in proximity of the highest occupied molecular orbital (HOMO). Photoelectron spectroscopy (PES) measurements were performed on FePc in gas phase at several photon energies in the interval between 21 and 150 eV. Significant variations of the relative intensities were observed, indicating a different elemental and atomic orbital composition of the highest lying spectral features. The electronic structure of a single FePc molecule was first computed by quantum chemical calculations by means of density functional theory (DFT). The hybrid Becke 3-parameter, Lee, Yang and Parr (B3LYP) functional and the semilocal 1996 functional of Perdew, Burke and Ernzerhof (PBE) of the generalized gradient approximation (GGA-)type, exchange-correlation functionals were used. The DFT/B3LYP calculations find that the HOMO is a doubly occupied π-type orbital formed by the carbon 2p electrons, and the HOMO-1 is a mixing of carbon 2p and iron 3d electrons. In contrast, the DFT/PBE calculations find an iron 3d contribution in the HOMO. The experimental photoelectron spectra of the valence band taken at different energies were simulated by means of the Gelius model, taking into account the atomic subshell photoionization cross sections. Moreover, calculations of the electronic structure of FePc using the GGA+U method were performed, where the strong correlations of the Fe 3d electronic states were incorporated through the Hubbard model. Through a comparison with our quantum chemical calculations we find that the best agreement with the experimental results is obtained for a U(eff) value of 5 eV.

17.
J Phys Chem B ; 113(24): 8201-5, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19473020

RESUMEN

Oxygen K absorption and emission spectra of water molecules confined in dodecyltrimethyl ammonium chloride micelle structures are presented. The local electronic structure of the water molecules is found to be dramatically different from the electronic structure of water molecules in the gas-phase as well as in liquid water. Hybridization with states of the ions in the surrounding ions is directly observed, and evidence for stabilization of the water molecules relative to molecules in bulk water is found.


Asunto(s)
Electrones , Micelas , Compuestos de Amonio Cuaternario/química , Agua/química , Modelos Moleculares , Espectrometría por Rayos X
18.
J Phys Chem Lett ; 10(24): 7636-7643, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747290

RESUMEN

Recent advances in operando-synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [RuII(bpy)2(py)(OH2)]2+, in an aqueous environment. There is a unique fingerprint of the extremely important higher-valence ruthenium-oxo species in the XPS spectra along the oxidation reaction pathway. Furthermore, a sequential method combining quantum mechanics and molecular mechanics is used to illuminate the underlying physical chemistry of such systems. This study provides the basis for the future development of in-operando XPS techniques for water oxidation reactions.

19.
Adv Mater ; 30(18): e1706076, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29573299

RESUMEN

For the electrochemical hydrogen evolution reaction (HER), the electrical properties of catalysts can play an important role in influencing the overall catalytic activity. This is particularly important for semiconducting HER catalysts such as MoS2 , which has been extensively studied over the last decade. Herein, on-chip microreactors on two model catalysts, semiconducting MoS2 and semimetallic WTe2 , are employed to extract the effects of individual factors and study their relations with the HER catalytic activity. It is shown that electron injection at the catalyst/current collector interface and intralayer and interlayer charge transport within the catalyst can be more important than thermodynamic energy considerations. For WTe2 , the site-dependent activities and the relations of the pure thermodynamics to the overall activity are measured and established, as the microreactors allow precise measurements of the type and area of the catalytic sites. The approach presents opportunities to study electrochemical reactions systematically to help establish rational design principles for future electrocatalysts.

20.
J Chem Theory Comput ; 12(4): 1772-85, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26925803

RESUMEN

There exists an extensive literature on the electronic structure of transition-metal phthalocyanines (TMPcs), either as single molecules or adsorbed on surfaces, where explicit intra-atomic Coulomb interactions of the strongly correlated orbitals are included in the form of a Hubbard U term. The choice of U is, to a large extent, based solely on previous values reported in the literature for similar systems. Here, we provide a systematic analysis of the influence of electron correlation on the electronic structure and magnetism of several TMPcs (MnPc, FePc, CoPc, NiPc, and CuPc). By comparing calculated results to valence-band photoelectron spectroscopy measurements, and by determining the Hubbard term from linear response, we show that the choice of U is not as straightforward and can be different for each different TMPc. This, in turn, highlights the importance of individually estimating the value of U for each system before performing any further analysis and shows how this value can influence the final results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA