Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
N Engl J Med ; 388(17): 1631, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37099354
2.
Biochem J ; 470(3): 331-42, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26195823

RESUMEN

Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca(2+) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.


Asunto(s)
Mucolipidosis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Autofagia , Sitios de Unión , Señalización del Calcio , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Genes de Insecto , Células HEK293 , Humanos , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Mucolipidosis/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Potencial de Receptor Transitorio/genética
3.
Proc Natl Acad Sci U S A ; 108(14): 5849-54, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436046

RESUMEN

Mammalian brain connectivity requires the coordinated production and migration of billions of neurons and the formation of axons and dendrites. The LKB1/Par4 kinase is required for axon formation during cortical development in vivo partially through its ability to activate SAD-A/B kinases. LKB1 is a master kinase phosphorylating and activating at least 11 other serine/threonine kinases including the metabolic sensor AMP-activated protein kinase (AMPK), which defines this branch of the kinome. A recent study using a gene-trap allele of the ß1 regulatory subunit of AMPK suggested that AMPK catalytic activity is required for proper brain development including neurogenesis and neuronal survival. We used a genetic loss-of-function approach producing AMPKα1/α2-null cortical neurons to demonstrate that AMPK catalytic activity is not required for cortical neurogenesis, neuronal migration, polarization, or survival. However, we found that application of metformin or AICAR, potent AMPK activators, inhibit axogenesis and axon growth in an AMPK-dependent manner. We show that inhibition of axon growth mediated by AMPK overactivation requires TSC1/2-mediated inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Our results demonstrate that AMPK catalytic activity is not required for early neural development in vivo but its overactivation during metabolic stress impairs neuronal polarization in a mTOR-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Axones/fisiología , Neurogénesis/fisiología , Estrés Fisiológico/fisiología , Proteínas Quinasas Activadas por AMP/genética , Animales , Western Blotting , Cartilla de ADN/genética , Electroporación , Activación Enzimática/fisiología , Ratones , Neurogénesis/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR/metabolismo
4.
J Cell Biol ; 177(3): 387-92, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17470638

RESUMEN

LKB1 is mutated in both familial and spontaneous tumors, and acts as a master kinase that activates the PAR-1 polarity kinase and the adenosine 5'monophosphate-activated kinase (AMPK). This has led to the hypothesis that LKB1 acts as a tumor suppressor because it is required to maintain cell polarity and growth control through PAR-1 and AMPK, respectively. However, the genetic analysis of LKB1-AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. We describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit AMPKalpha. Surprisingly, ampkalpha mutant epithelial cells lose their polarity and overproliferate under energetic stress. LKB1 is required in vivo for AMPK activation, and lkb1 mutations cause similar energetic stress-dependent phenotypes to ampkalpha mutations. Furthermore, lkb1 phenotypes are rescued by a phosphomimetic version of AMPKalpha. Thus, LKB1 signals through AMPK to coordinate epithelial polarity and proliferation with cellular energy status, and this might underlie the tumor suppressor function of LKB1.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Dominio Catalítico/fisiología , Polaridad Celular , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo Energético/genética , Activación Enzimática/genética , Células Epiteliales/citología , Complejos Multienzimáticos/genética , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
5.
Curr Biol ; 16(10): 1006-11, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16713958

RESUMEN

The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Sistema Nervioso/crecimiento & desarrollo , Animales , Axones/fisiología , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Desarrollo Embrionario , Endosomas/fisiología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética
6.
PLoS One ; 13(10): e0204605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30359371

RESUMEN

Obesity and insulin resistance are primary risk factors for Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD is generally exhibited by non-progressive simple steatosis. However, a significant subset of patient's progress to nonalcoholic steatohepatitis (NASH) that is defined by the presence of steatosis, inflammation and hepatocyte injury with fibrosis. Unfortunately, there are no approved therapies for NAFLD or NASH and therefore therapeutic approaches are urgently needed. Niclosamide is an U.S. Food and Drug Administration (FDA)-approved anthelmintic drug that mediates its effect by uncoupling oxidative phosphorylation. Niclosamide and its salt forms, Niclosamide Ethanolamine (NEN), and Niclosamide Piperazine (NPP) have shown efficacy in murine models of diet induced obesity characterized by attenuation of the prominent fatty liver disease phenotype and improved glucose metabolism. While the exact mechanism(s) underlying these changes remains unclear, the ability to uncouple oxidative phosphorylation leading to increased energy expenditure and lipid metabolism or attenuation of PKA mediated glucagon signaling in the liver have been proposed. Unfortunately, niclosamide has very poor water solubility, leading to low oral bioavailability. This, in addition to mitochondrial uncoupling activity and potential genotoxicity have reduced enthusiasm for its clinical use. More recently, salt forms of niclosamide, NEN and NPP, have demonstrated improved oral bioavailability while retaining activity. This suggests that development of safer more effective niclosamide derivatives for the treatment of NAFLD and Type 2 Diabetes may be possible. Herein we explored the ability of a series of N-substituted phenylbenzamide derivatives of the niclosamide salicylanilide chemotype to attenuate hepatic steatosis using a novel phenotypic in vitro model of fatty liver and the high fat diet-fed mouse model of diet induced obesity. These studies identified novel compounds with improved pre-clinical properties that attenuate hepatic steatosis in vitro and in vivo. These compounds with improved drug properties may be useful in alleviating symptoms and protection against disease progression in patients with metabolic syndrome and NAFLD.


Asunto(s)
Fármacos Antiobesidad/farmacología , Benzamidas/farmacología , Dieta Alta en Grasa/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Ratas Sprague-Dawley , Salmonella typhimurium/efectos de los fármacos
7.
Genetics ; 172(4): 2325-35, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16415365

RESUMEN

Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin::GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin::GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment.


Asunto(s)
Dendritas/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Técnicas Genéticas , Mutación , Neuronas/metabolismo , Animales , Cruzamientos Genéticos , Metanosulfonato de Etilo , Colorantes Fluorescentes/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Mutagénesis , Mutágenos , Transgenes
8.
Cell Biochem Biophys ; 47(3): 321-31, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17652778

RESUMEN

Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKalpha resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
9.
PLoS One ; 12(4): e0176502, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28437447

RESUMEN

Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.


Asunto(s)
Anhidrasa Carbónica III/metabolismo , Dieta Alta en Grasa , Ácidos Grasos/biosíntesis , Metabolismo de los Lípidos/fisiología , Lipogénesis/genética , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Composición Corporal/fisiología , Peso Corporal/fisiología , Anhidrasa Carbónica III/genética , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/genética , Triglicéridos/metabolismo
10.
J Neurosci ; 25(39): 8878-88, 2005 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16192377

RESUMEN

Drosophila dendritic arborization (da) neurons contain subclasses of neurons with distinct dendritic morphologies. We investigated calcium/calmodulin-dependent protein kinase II (CaMKII) regulation of dendritic structure and dynamics in vivo using optically transparent Drosophila larvae. CaMKII increases the dynamic nature and formation of dendritic filopodia throughout larval development but only affects neurons that normally contain dendritic filopodia. In parallel, we examined the effects of Rac1 activity on dendritic structure to explore signaling specificity. In contrast to CaMKII activity, Rac1 does not alter filopodia stability but instead causes de novo filopodia formation on all da neurons. Although both mediators increase cytoskeletal turnover, measured by fluorescence recovery after photobleaching experiments, only CaMKII increases the dynamic nature of dendritic filopodia. CaMKII signaling thus appears to use mechanisms and machinery distinct from Rac1 signaling. This study illustrates a molecular means of uncoupling cytoskeletal regulation from morphological regulation. Our results suggest that Drosophila dendritic filopodia may share some cytoskeletal regulatory mechanisms with mammalian dendritic filopodia. Furthermore, general dendrite cytoskeletal compartmentalization is conserved in multipolar neurons.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Citoesqueleto/fisiología , Drosophila/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Actinas/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Citoesqueleto/ultraestructura , Dendritas/metabolismo , Dendritas/fisiología , Dendritas/ultraestructura , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Larva , Neuronas/ultraestructura , Fenotipo , Seudópodos/fisiología , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/fisiología
11.
Exp Suppl ; 107: 389-401, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812989

RESUMEN

In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -ß, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Longevidad/genética , Enfermedad de Parkinson/genética , Transducción de Señal/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Modelos Animales de Enfermedad , Drosophila melanogaster/enzimología , Homeostasis , Humanos , Metabolismo de los Lípidos/genética , Biología Molecular/métodos , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia
13.
J Exp Neurosci ; 9(Suppl 2): 81-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27081317

RESUMEN

Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.

14.
Assay Drug Dev Technol ; 13(9): 558-69, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26505612

RESUMEN

Diabetes currently affects 9.3% of the U.S. population totaling $245 billion annually in U.S. direct and indirect healthcare costs. Current therapies for diabetes are limited in their ability to control blood glucose and/or enhance insulin sensitivity. Therefore, innovative and efficacious therapies for diabetes are urgently needed. Herein we describe a fluorescent insulin reporter system (preproinsulin-mCherry, PPI-mCherry) that tracks live-cell insulin dynamics and secretion in pancreatic ß-cells with utility for high-content assessment of real-time insulin dynamics. Additionally, we report a new modality for sensing insulin granule packaging in conventional high-throughput screening (HTS), using a hybrid cell-based fluorescence polarization (FP)/internal FRET biosensor using the PPI-mCherry reporter system. We observed that bafilomycin, a vacuolar H(+) ATPase inhibitor and inhibitor of insulin granule formation, significantly increased mCherry FP in INS-1 cells with PPI-mCherry. Partial least squares regression analysis demonstrated that an increase of FP by bafilomycin is significantly correlated with a decrease in granularity of PPI-mCherry signal in the cells. The increased FP by bafilomycin is due to inhibition of self-Förster resonant energy transfer (homo-FRET) caused by the increased mCherry intermolecular distance. FP substantially decreases when insulin is tightly packaged in the granules, and the homo-FRET decreases when insulin granule packaging is inhibited, resulting in increased FP. We performed pilot HTS of 1782 FDA-approved small molecules and natural products from Prestwick and Enzo chemical libraries resulting in an overall Z'-factor of 0.52 ± 0.03, indicating the suitability of this biosensor for HTS. This novel biosensor enables live-cell assessment of protein-protein interaction/protein aggregation in live cells and is compatible with conventional FP plate readers.


Asunto(s)
Técnicas Biosensibles/métodos , Polarización de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Insulina/análisis , Proteínas Luminiscentes/análisis , Precursores de Proteínas/análisis , Animales , Productos Biológicos/toxicidad , Células Cultivadas , Polarización de Fluorescencia/tendencias , Colorantes Fluorescentes/análisis , Ensayos Analíticos de Alto Rendimiento/tendencias , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Proteína Fluorescente Roja
15.
Pharmacol Ther ; 143(1): 111-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24583089

RESUMEN

AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Holoenzimas/química , Humanos , Isoenzimas/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-24396733

RESUMEN

AMPK is a conserved heterotrimeric serine-threonine kinase that regulates anabolic and catabolic pathways in eukaryotes. Its central role in cellular and whole body metabolism makes AMPK a commonly proposed therapeutic target for illnesses characterized by abnormal energy regulation, including cancer and diabetes. Many AMPK modulators, however, produce AMPK-independent effects. To identify drugs that modulate AMPK activity independent of the canonical ATP-binding pocket found throughout the kinome, we designed a robust fluorescence-based high throughput screening assay biased toward the identification of molecules that bind the regulatory region of AMPK through displacement of MANT-ADP, a fluorescent ADP analog. Automated pin tools were used to rapidly transfer small molecules to a low volume assay mixture on 384-well plates. Prior to assay validation, we completed a full assay optimization to maximize the signal-to-background and reduce variability for robust detection of small molecules displacing MANT-ADP. After validation, we screened 13,120 molecules and identified 3 positive hits that dose-dependently inhibited the protein-bound signal of MANT-ADP in the presence of both full-length AMPK and the truncated "regulatory fragment" of AMPK, which is missing the kinase active site. The average Z'-factor for the screen was 0.55 and the compound confirmation rate was 60%. Thus, this fluorescence-based assay may be paired with in vitro kinase assays and cell-based assays to help identify molecules that selectively regulate AMPK with fewer off-target effects on other kinases.

17.
Genetics ; 195(1): 59-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23770702

RESUMEN

Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104(bris)) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.


Asunto(s)
Dendritas/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila/genética , Cinesinas/metabolismo , Morfogénesis , Unión Neuromuscular/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Procesos de Crecimiento Celular , Drosophila/citología , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Proteínas de Drosophila/genética , Cinesinas/genética , Locomoción , Datos de Secuencia Molecular , Mutación Missense , Unión Neuromuscular/citología
18.
Biol Open ; 2(12): 1321-3, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24337116

RESUMEN

The maintenance of energetic homeostasis in the face of limited available nutrients is a complex problem faced by all organisms. One important mechanism to maintain energetic homeostasis involves the activation of the energy sensor AMP-activated protein kinase (AMPK). AMPK is a cell-autonomous energy sensor that is highly sensitive to and regulated by the ATP to ADP and ATP to AMP ratios. However, the genetic analysis of AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. Here, we describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit (AMPKα) and their implications for neural maintenance and integrity. This article provides a citation replacement for previously published ampkα alleles, transgenes and neuronal phenotypes, which remain accurate; however, they were used in a previously published study that has subsequently been retracted (Mirouse et al., 2013).

19.
Mol Biol Cell ; 23(2): 381-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22114351

RESUMEN

AMP-activated protein kinase (AMPK) is a key energy sensor that regulates metabolism to maintain cellular energy balance. AMPK activation has also been proposed to mimic benefits of caloric restriction and exercise. Therefore, identifying downstream AMPK targets could elucidate new mechanisms for maintaining cellular energy homeostasis. We identified the phosphotransferase nucleoside diphosphate kinase (NDPK), which maintains pools of nucleotides, as a direct AMPK target through the use of two-dimensional differential in-gel electrophoresis. Furthermore, we mapped the AMPK/NDPK phosphorylation site (serine 120) as a functionally potent enzymatic "off switch" both in vivo and in vitro. Because ATP is usually the most abundant cellular nucleotide, NDPK would normally consume ATP, whereas AMPK would inhibit NDPK to conserve energy. It is intriguing that serine 120 is mutated in advanced neuroblastoma, which suggests a mechanism by which NDPK in neuroblastoma can no longer be inhibited by AMPK-mediated phosphorylation. This novel placement of AMPK upstream and directly regulating NDPK activity has widespread implications for cellular energy/nucleotide balance, and we demonstrate in vivo that increased NDPK activity leads to susceptibility to energy deprivation-induced death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Homeostasis , Nucleósido-Difosfato Quinasa/metabolismo , Fosfoserina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Línea Celular Tumoral , Drosophila melanogaster/enzimología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Nucleósido-Difosfato Quinasa/antagonistas & inhibidores , Nucleósido-Difosfato Quinasa/genética , Fosforilación , Electroforesis Bidimensional Diferencial en Gel
20.
Genetics ; 192(2): 457-66, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22798489

RESUMEN

Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Drosophila melanogaster/genética , Glucagón , Hormonas de Insectos , Oligopéptidos , Ácido Pirrolidona Carboxílico/análogos & derivados , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Supervivencia Celular , Regulación de la Expresión Génica , Glucagón/genética , Glucagón/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Células Neuroendocrinas/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA