Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(11): e202400085, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574237

RESUMEN

Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , ADN Catalítico/metabolismo , ADN Catalítico/química , Humanos , ARN/metabolismo , ARN/análisis , División del ARN
2.
Surg Endosc ; 38(3): 1306-1315, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110792

RESUMEN

AIM/BACKGROUND: Intra-operative colonic perfusion assessment via indocyanine green fluorescence angiography (ICGFA) aims to address malperfusion-related anastomotic complications; however, its interpretation suffers interuser variability (IUV), especially early in ICGFA experience. This work assesses the impact of a protocol developed for both operator-based judgement and computational development on interpretation consistency, focusing on senior surgeons yet to start using ICGFA. METHODS: Experienced and junior gastrointestinal surgeons were invited to complete an ICGFA-experience questionnaire. They subsequently interpreted nine operative ICGFA videos regarding perfusion sufficiency of a surgically prepared distal colon during laparoscopic anterior resection by indicating their preferred site of proximal transection using an online annotation platform (mindstamp.com). Six ICGFA videos had been prepared with a clinical standardisation protocol controlling camera and patient positioning of which three each had monochrome near infrared (NIR) and overlay display. Three others were non-standardised controls with synchronous NIR and overlay picture-in-picture display. Differences in transection level between different cohorts were assessed for intraclass correlation coefficient (ICC) via ImageJ and IBM SPSS. RESULTS: 58 clinicians (12 ICGFA experts, 46 ICGFA inexperienced of whom 23 were either finished or within one year of finishing training and 23 were junior trainees) participated as per power calculations. 63% felt that ICGFA should be routinely deployed with 57% believing interpretative competence requires 11-50 cases. Transection level concordance was generally good (ICC = 0.869) across all videos and levels of expertise (0.833-0.915). However, poor agreement was evident with the standardised protocol videos for overlay presentation (0.208-0.345). Similarly, poor agreement was seen for the monochrome display (0.392-0.517), except for those who were trained but ICG inexperienced (0.877) although even here agreement was less than with unstandardised videos (0.943). CONCLUSION: Colorectal ICGFA acquisition and display standardisation impacts IUV with this specific protocol tending to diminish surgeon interpretation consistency. ICGFA video recording for computational development may require dedicated protocols.


Asunto(s)
Neoplasias Colorrectales , Cirugía Colorrectal , Humanos , Verde de Indocianina , Angiografía con Fluoresceína , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/cirugía , Fuga Anastomótica , Cirugía Colorrectal/métodos , Anastomosis Quirúrgica/métodos
3.
Small ; 19(41): e2303007, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294164

RESUMEN

clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are increasingly used in biosensor development. However, directly translating recognition events for non-nucleic acid targets by CRISPR into effective measurable signals represents an important ongoing challenge. Herein, it is hypothesized and confirmed that CRISPR RNAs (crRNAs) in a circular topology efficiently render Cas12a incapable of both site-specific double-stranded DNA cutting and nonspecific single-stranded DNA trans cleavage. Importantly, it is shown that nucleic acid enzymes (NAzymes) with RNA-cleaving activity can linearize the circular crRNAs, activating CRISPR-Cas12a functions. Using ligand-responsive ribozymes and DNAzymes as molecular recognition elements, it is demonstrated that target-triggered linearization of circular crRNAs offers great versatility for biosensing. This strategy is termed as "NAzyme-Activated CRISPR-Cas12a with Circular CRISPR RNA (NA3C)." Use of NA3C for clinical evaluation of urinary tract infections using an Escherichia coli-responsive RNA-cleaving DNAzyme to test 40 patient urine samples, providing a diagnostic sensitivity of 100% and specificity of 90%, is further demonstrated.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas/genética , ARN Circular , ADN de Cadena Simple , ARN
4.
Chemistry ; 29(27): e202300075, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36790320

RESUMEN

A new method for the detection of genomic RNA combines RNA cleavage by the 10-23 DNAzyme and use of the cleavage fragments as primers to initiate rolling circle amplification (RCA). 230 different 10-23 DNAzyme variants were screened to identify those that target accessible RNA sites within the highly structured RNA transcripts of SARS-CoV-2. A total of 28 DNAzymes were identified with >20 % cleavage, 5 with >40 % cleavage and one with >60 % in 10 min. The cleavage fragments from these reactions were then screened for coupling to an RCA reaction, leading to the identification of several cleavage fragments that could efficiently initiate RCA. Using a newly developed quasi-exponential RCA method with a detection limit of 500 aM of RNA, 14 RT-PCR positive and 15 RT-PCR negative patient saliva samples were evaluated for SARS-CoV-2 genomic RNA, achieving a clinical sensitivity of 86 % and specificity of 100 % for detection of the virus in <2.5 h.


Asunto(s)
Técnicas Biosensibles , COVID-19 , ADN Catalítico , Humanos , ADN Catalítico/metabolismo , ARN , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , División del ARN , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Genómica , Técnicas Biosensibles/métodos
5.
J Chem Phys ; 158(2): 024702, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641383

RESUMEN

Predictive models for the thermal, chemical, and mechanical response of high explosives at extreme conditions are important for investigating their performance and safety. We introduce a particle-based, reactive model of 1,3,5-trinitro-1,3,5-triazinane (RDX) with molecular resolution utilizing generalized energy-conserving dissipative particle dynamics with reactions. The model is parameterized with respect to the data from atomistic molecular dynamics simulations as well as from quantum mechanical calculations, thus bridging atomic processes to the mesoscales, including microstructures and defects. It accurately captures the response of RDX under a range of thermal loading conditions compared to atomistic simulations. In addition, the Hugoniot response of the CG model in the overdriven regime reasonably matches atomistic simulations and experiments. Exploiting the model's high computational efficiency, we investigate mesoscale systems involving millions of molecules and characterize size-dependent criticality of hotspots in RDX. The combination of accuracy and computational efficiency of our reactive model provides a tool for investigation of mesoscale phenomena, such as the role of microstructures and defects in the shock-to-deflagration transition, through particle-based simulation.

6.
Nucleic Acids Res ; 49(13): 7267-7279, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232998

RESUMEN

We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19/virología , Biblioteca de Genes , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , COVID-19/diagnóstico , Colorimetría/métodos , Humanos , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros
7.
Chem Soc Rev ; 51(21): 9009-9067, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36259976

RESUMEN

Functional nucleic acids (FNAs), including DNA aptamers and DNAzymes, are finding increasing use as molecular recognition elements for point-of-care (POC) assays and sensors. An ongoing challenge in the development of FNA-based POC sensors is the ability to achieve detection of low levels of analyte without compromising assay time and ease of use. Rolling circle amplification (RCA) is a leading nucleic acid (NA) isothermal amplification method which can be coupled with FNAs for the ultrasensitive detection of non-NA targets. Herein we examine the key considerations required when designing FNA-coupled biosensors utilizing RCA. Specifically, we describe methods for using FNAs as inputs to regulate RCA, various modes of RCA amplification, and methods to detect the output of the RCA reaction, along with how these can be combined to allow detection of non-NA targets. Recent progress on development of portable optical and electrochemical POC devices that incorporate RCA is then described, followed by a summary of key challenges and opportunities in the field.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Aptámeros de Nucleótidos/química
8.
Angew Chem Int Ed Engl ; 62(38): e202307451, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37477970

RESUMEN

The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.


Asunto(s)
ADN Catalítico , Peroxidasa del Eosinófilo , Eosinofilia , Esputo , Animales , Humanos , ADN Catalítico/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Eosinofilia/diagnóstico , Eosinófilos/enzimología , Esputo/química , Esputo/citología
9.
J Am Chem Soc ; 144(51): 23465-23473, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36520671

RESUMEN

Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Glicoproteína de la Espiga del Coronavirus , Bioensayo , Oligonucleótidos
10.
Chembiochem ; 23(1): e202100476, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34643997

RESUMEN

We report a new method for biosensing based on the target-mediated resistance of DNA aptamers against 5'-exonuclease digestion, allowing them to act as primers for rolling circle amplification (RCA). A target-bound DNA strand containing an aptamer region on the 5'-end and a primer region on the 3'-end is protected from 5'-exonuclease digestion by RecJ exonuclease in a target-dependent manner. As the protected aptamer is at the 5'-end, the exposed primer on the 3'-end can participate in RCA in the presence of a circular template to generate a turn-on sensor. Without target, RecJ digests the primer and prevents RCA from occurring, allowing quantitative fluorescence detection of both thrombin, a protein, and ochratoxin A (OTA), a small molecule, at picomolar concentrations.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Exodesoxirribonucleasas/metabolismo , Aptámeros de Nucleótidos/química , Proteínas Bacterianas/química , Exodesoxirribonucleasas/química
11.
Acc Chem Res ; 54(18): 3540-3549, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34478272

RESUMEN

Pathogens have long presented a significant threat to human lives, and hence the rapid detection of infectious pathogens is vital for improving human health. Current detection methods lack the means to detect infectious pathogens in a simple, rapid, and reliable manner at the time and point of need. Functional nucleic acids (FNAs) have the potential to overcome these limitations by acting as key components for point-of-care (POC) biosensors due to their distinctive advantages that include high binding affinities and specificities, excellent chemical stability, ease of synthesis and modification, and compatibility with a variety of signal-amplification and signal-transduction mechanisms.This Account summarizes the work completed in our groups toward developing FNA-based biosensors for detecting bacteria. In vitro selection has led to the isolation of many RNA-cleaving fluorogenic DNAzymes (RFDs) and DNA aptamers that can recognize infectious pathogens, including Escherichia coli, Clostridium difficile, Helicobacter pylori, and Legionella pneumophila. In most cases, a "many-against-many" approach was employed using a DNA library against a crude cellular mixture of an infectious pathogen containing diverse biomarkers as the target to isolate RFDs, with combined counter and positive selections ensuring high specificity toward the desired target. This procedure allows for the isolation of pathogen-specific FNAs without first identifying a suitable biomarker. Multiple target-specific DNA aptamers, including anti-glutamate dehydrogenase (GDH) circular aptamers, anti-degraded toxin B aptamers, and anti-RNase HII aptamers, have also been isolated for the detection of bacteria such as Clostridium difficile. The isolated FNAs have been integrated into fluorescent, colorimetric, and electrochemical biosensors using various signal transduction mechanisms. Both simple-to-use paper-based analytical devices and hand-held electrical devices with integrated FNAs have been developed for POC applications. In addition, signal-amplification strategies, including DNA catenane enabled rolling circle amplification (RCA), DNAzyme feedback RCA, and an all-DNA amplification system using a four-way junction and catalytic hairpin assembly (CHA), have been designed and applied to these systems to further increase their detection sensitivity. The use of these FNA-based biosensors to detect pathogens directly in clinical samples, such as urine, blood, and stool, has now been demonstrated with an outstanding sensitivity of as low as 10 cells per milliliter, highlighting the tremendous potential of using FNA-based sensors in clinical applications. We further describe strategies to overcome the challenges of using FNA-based biosensors in clinical applications, including strategies to improve the stability of FNAs in biological samples and prevent their nonspecific degradation from nucleases and strategies to deal with issues such as signal loss caused by nonspecific binding and biofouling. Finally, the remaining roadblocks for employing FNA-based biosensors in clinical applications are discussed.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Bacterias/genética , Técnicas Biosensibles/métodos , ADN Catalítico/metabolismo , Aptámeros de Nucleótidos/química , Bacterias/aislamiento & purificación , ADN Catalítico/química , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto
12.
Chemistry ; 28(15): e202200524, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35218097

RESUMEN

Invited for the cover of this issue are John Brennan, Yingfu Li, and co-workers at McMaster University. The image depicts MSA52 as a universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern. Read the full text of the article at 10.1002/chem.202200078.

13.
Chemistry ; 28(15): e202200078, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35084794

RESUMEN

We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/virología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
14.
Chem Soc Rev ; 50(16): 8954-8994, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34227631

RESUMEN

This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico/metabolismo , Animales , Humanos
15.
Angew Chem Int Ed Engl ; 61(3): e202112346, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34816559

RESUMEN

Detection of pathogenic bacteria in complex biological matrices remains a major challenge. Herein, we report the selection and optimization of a new DNAzyme for Staphylococcus aureus (SA) and the use of the DNAzyme to develop a simple lateral flow device (LFD) for detection of SA in nasal mucus. The DNAzyme was generated by in vitro selection using a crude extra/intracellular mixture derived from SA, which could be used directly for simple solution or paper-based fluorescence assays for SA. The DNAzyme was further modified to produce a DNA cleavage fragment that acted as a bridging element to bind DNA-modified gold nanoparticles to the test line of a LFD, producing a simple colorimetric dipstick test. The LFD was evaluated with nasal mucus samples spiked with SA, and demonstrated that SA detection was possible in minutes with minimal sample processing.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico/metabolismo , Moco/microbiología , Cavidad Nasal/microbiología , Staphylococcus aureus/aislamiento & purificación , Humanos , Staphylococcus aureus/metabolismo
16.
Chemistry ; 27(58): 14543-14549, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34437748

RESUMEN

We report a generalizable strategy for biosensing that takes advantage of the resistance of DNA aptamers against nuclease digestion when bound with their targets, coupled with toehold mediated strand displacement (TMSD) and rolling circle amplification (RCA). A DNA aptamer containing a toehold extension at its 5'-end protects it from 3'-exonuclease digestion by phi29 DNA polymerase (phi29 DP) in a concentration-dependent manner. The protected aptamer can participate in RCA in the presence of a circular template that is designed to free the aptamer from its target via TMSD. The absence of the target leads to aptamer digestion, and thus no RCA product is produced, resulting in a turn-on sensor. Using two different DNA aptamers, we demonstrate rapid and quantitative real-time fluorescence detection of two human proteins: platelet-derived growth factor (PDGF) and thrombin. Sensitive detection of PDGF was also achieved in human serum and human plasma, demonstrating the selectivity of the assay.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Polimerasa Dirigida por ADN , Digestión , Humanos , Técnicas de Amplificación de Ácido Nucleico , Trombina
17.
Angew Chem Int Ed Engl ; 60(45): 24266-24274, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34464491

RESUMEN

We report a simple and rapid saliva-based SARS-CoV-2 antigen test that utilizes a newly developed dimeric DNA aptamer, denoted as DSA1N5, that specifically recognizes the spike proteins of the wildtype virus and its Alpha and Delta variants with dissociation constants of 120, 290 and 480 pM, respectively, and binds pseudotyped lentiviruses expressing the wildtype and alpha trimeric spike proteins with affinity constants of 2.1 pM and 2.3 pM, respectively. To develop a highly sensitive test, DSA1N5 was immobilized onto gold electrodes to produce an electrochemical impedance sensor, which was capable of detecting 1000 viral particles per mL in 1:1 diluted saliva in under 10 min without any further sample processing. Evaluation of 36 positive and 37 negative patient saliva samples produced a clinical sensitivity of 80.5 % and specificity of 100 % and the sensor could detect the wildtype virus as well as the Alpha and Delta variants in the patient samples, which is the first reported rapid test that can detect any emerging variant of SARS-CoV-2.


Asunto(s)
Antígenos Virales/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Prueba Serológica para COVID-19 , Técnicas Electroquímicas , SARS-CoV-2/genética , Humanos , Saliva/química
18.
Chemistry ; 26(22): 5085-5092, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32096262

RESUMEN

We report a method to detect proteins via suppression of rolling circle amplification (RCA) by using an appropriate aptamer as the linear primer (denoted as an aptaprimer) to initiate RCA. In the absence of a protein target, the aptaprimer is free to initiate RCA, which can produce long DNA products that are detected via binding of a fluorescent intercalating dye. Introduction of a target causes the primer region within the aptamer to become unavailable for binding to the circular template, inhibiting RCA. Using SYBR Gold or QuantiFluor dyes as fluorescent probes to bind to the RCA reaction product, it is possible to produce a generic protein-modulated RCA assay system that does not require fluorophore- or biotin-modified DNA species, substantially reducing complexity and cost of reagents. Based on this modulation of RCA, we demonstrate the ability to produce both solution and paper-based assays for rapid and quantitative detection of proteins including platelet derived growth factor and thrombin.


Asunto(s)
Biotina/química , ADN/metabolismo , Proteínas/metabolismo , Trombina/química , Biotina/metabolismo , Cartilla de ADN , Colorantes Fluorescentes , Proteínas/química , Trombina/metabolismo
19.
Analyst ; 145(5): 1817-1824, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31956872

RESUMEN

Screening for a deficiency of glucose-6-phosphate dehydrogenase (G6PD) in red blood cells is vital for determining the potentially life-threatening presence of congenital, hereditary or induced hemolytic anemias. In this study, a "sample-to-readout" paper-based point-of-care (POC) colorimetric biosensor was developed for direct detection of G6PD in whole blood by simple visual comparison to a color card. The G6PD paper sensor was highly stable with no observable loss in performance after room temperature storage for at least 6 weeks, and worked equally well at room temperature and 37 °C. The simple printed paper format and the stability of the colorimetric reagents facilitates scalable manufacturing. The ability to utilize well established sample collection and preparation protocols along with a colorimetric visual readout should facilitate future transfer of this proof-of-concept POC biosensor to remote or resource-poor locations.


Asunto(s)
Técnicas Biosensibles/métodos , Colorimetría/métodos , Eritrocitos/metabolismo , Glucosafosfato Deshidrogenasa/sangre , Animales , Ovinos
20.
Angew Chem Int Ed Engl ; 59(26): 10401-10405, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32207868

RESUMEN

We report on a programmable all-DNA biosensing system that centers on the use of a 4-way junction (4WJ) to transduce a DNAzyme reaction into an amplified signal output. A target acts as a primary input to activate an RNA-cleaving DNAzyme, which then cleaves an RNA-containing DNA substrate that is designed to be a component of a 4WJ. The formation of the 4WJ controls the release of a DNA output that becomes an input to initiate catalytic hairpin assembly (CHA), which produces a second DNA output that controls assembly of a split G-quadruplex as a fluorescence signal generator. The 4WJ can be configured to produce either a turn-off or turn-on switch to control the degree of CHA, allowing target concentration to be determined in a quantitative manner. We demonstrate this approach by creating a sensor for E. coli that could detect as low as 50 E. coli cells mL-1 within 85 min and offers an amplified bacterial detection method that does not require a protein enzyme.


Asunto(s)
Técnicas Biosensibles/métodos , ADN Catalítico/química , Técnicas de Tipificación Bacteriana/métodos , Escherichia coli/aislamiento & purificación , G-Cuádruplex , Límite de Detección , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA