Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cogn Affect Behav Neurosci ; 20(3): 565-574, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32378060

RESUMEN

Theory of mind is the ability to understand others' beliefs, mental states, and knowledge. Perspective-taking is a key part of this capacity, and while previous research has suggested that calculating another's perspective is relatively straightforward, executive function is required to resolve the conflict between the self and that other perspective. Previous studies have shown that theory of mind is selectively impaired by transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC). However, it has been hitherto unclear as to which specific aspect of perspective-taking is impacted. The current study administered rTMS (N = 31 adult participants) to the DLPFC (active condition) and vertex (control condition) in a within-subjects design. Participants completed a L1 VPT task after each stimulation session, and focus (relative performance on self-perspective trials compared with other perspective trials) and conflict indices (relative ability to resolve competing self/other perspectives) were calculated. Results showed that stimulation of the DLPFC selectively impaired the conflict index, suggesting that the DLPFC may be causally related with the resolution of conflict between self and other perspectives, and that self-other interference may rely on domain-general processes.


Asunto(s)
Conflicto Psicológico , Corteza Prefrontal/fisiología , Percepción Espacial/fisiología , Teoría de la Mente/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Juicio/fisiología , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
2.
Plant Physiol ; 180(4): 1898-1911, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152126

RESUMEN

Diatoms secrete a significant amount of polysaccharides, which can serve as a critical organic carbon source for bacteria. The 2010 Deepwater Horizon oil spill exposed the Gulf of Mexico to substantial amounts of oil that also impacted the phytoplankton community. Increased production of exopolymeric substances was observed after this oil spill. Polysaccharides make up a major fraction of exopolymeric substances; however, their physiological role during an oil spill remains poorly understood. Here, we analyzed the role of polysaccharides in the growth and physiology of the oil-sensitive diatom Thalassiosira pseudonana and how they shape the surrounding bacterial community and its activity in the presence of oil. We found that inhibition of chrysolaminarin synthesis had a negative effect on the growth of T pseudonana and intracellular monosaccharide accumulation, which in turn suppressed photosynthesis by feedback inhibition. In addition, by acting as a carbon reserve, chrysolaminarin helped in the recovery of T pseudonana in the presence of oil. Inhibition of chrysolaminarin synthesis also influenced the bacterial community in the free-living fraction but not in the phycosphere. Exposure to oil alone led to increased abundance of oil-degrading bacterial genera and the activity of exoenzyme lipase. Our data show that chrysolaminarin synthesis plays an important role in the growth and survival of T pseudonana in the presence of oil, and its inhibition can influence the composition and activity of the surrounding bacterial community.


Asunto(s)
Diatomeas/metabolismo , Diatomeas/microbiología , Hidrocarburos/metabolismo , Polisacáridos/metabolismo , Fotosíntesis/fisiología , Polímeros/metabolismo
3.
J Phycol ; 56(6): 1457-1467, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32557638

RESUMEN

The poorly understood filamentous cyanobacterium Pseudanabaena is commonly epiphytic on Microcystis colonies and their abundances are often highly correlated during blooms. The response and adaptation of Microcystis to iron limitation have been extensively studied, but the strategies Pseudanabaena uses to respond to iron limitation are largely unknown. Here, physiological responses to iron limitation were compared between one Pseudanabaena and two Microcystis strains grown under different light intensities. The results showed that low-intensity light exacerbated, but high-intensity light alleviated, the negative effect of iron limitation on Pseudanabaena growth relative to two Microcystis strains. It was found that robust light-harvesting and photosynthetic efficiency allowed adaptation of Pseudanabaena to low light availability relative to two Microcystis strains only during iron sufficiency. The results also indicated that a larger investment in the photosynthetic antenna probably contributed to light/iron co-limitation of Pseudanabaena relative to two Microcystis strains under both light and iron limitation. Furthermore, the lower antenna pigments/chlorophyll a ratio and photosynthetic efficiency, and higher nonphotochemical quenching and saturation irradiance provided Pseudanabaena photoadaptation and photoprotection advantages over the two Microcystis strains under the high-light condition. The lower investment in antenna pigments of Pseudanabaena than the two Microcystis strains under high-light intensity is likely an efficient strategy for both saving iron quotas and decreasing photosensitivity. Therefore, when compared with Microcystis, the high plasticity of antenna pigments, along with the excellent photoadaptation and photoprotection ability of Pseudanabaena, probably ensures its ecological success under iron limitation when light is sufficient.


Asunto(s)
Cianobacterias , Microcystis , Clorofila A , Hierro , Fotosíntesis
4.
J Phycol ; 54(3): 317-328, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29464721

RESUMEN

Culture experiments were conducted on ten phytoplankton species to examine their biological and physiological responses during exposure to oil and a combination of oil and dispersant. The species tested included a range of taxa typically found in the Gulf of Mexico such as cyanobacteria, chlorophytes, and diatoms. Cultures were exposed to Macondo surrogate oil using the water accommodated fraction (WAF), and dispersed oil using a chemically enhanced WAF (CEWAF) and diluted CEWAF, to replicate conditions following the Deepwater Horizon spill in the Gulf of Mexico. A range of responses were observed, that could broadly class the algae as either "robust" or "sensitive" to oil and/or dispersant exposure. Robust algae were identified as Synechococcus elongatus, Dunaliella tertiolecta, two pennate diatoms Phaeodactylum tricornutum and Navicula sp., and Skeletonema grethae CCMP775, and were largely unaffected by any of the treatments (no changes to growth rate or time spent in lag phase relative to controls). The rest of the phytoplankton, all centric diatoms, exhibited at least some combination of reduced growth rates or increased lag time in response to oil and/or dispersant exposure. Photophysiology did not have a strong treatment effect, with significant inhibition of photosynthetic efficiency (Fv /Fm ) only observed in the CEWAF, if at all. We found that the effects of oil and dispersants on phytoplankton physiology were species-dependent, and not always detrimental. This has significant implications on how oil spills might impact phytoplankton community structure and bloom dynamics in the Gulf of Mexico, which in turn impacts higher trophic levels.


Asunto(s)
Lípidos/efectos adversos , Contaminación por Petróleo/efectos adversos , Fitoplancton/efectos de los fármacos , Tensoactivos/efectos adversos , Chlorophyceae/efectos de los fármacos , Chlorophyceae/fisiología , Diatomeas/efectos de los fármacos , Diatomeas/fisiología , Relación Dosis-Respuesta a Droga , Golfo de México , Fitoplancton/fisiología , Synechococcus/efectos de los fármacos , Synechococcus/fisiología
5.
Environ Pollut ; 288: 117774, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274645

RESUMEN

Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.


Asunto(s)
Microbiota , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Eucariontes , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Agua de Mar , Tensoactivos , Transcriptoma , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Mar Pollut Bull ; 153: 110906, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32056862

RESUMEN

The Deepwater Horizon oil spill released millions of barrels of crude oil into the Gulf of Mexico, and saw widespread use of the chemical dispersant Corexit. We assessed the role of traits, such as cell size, cell wall, motility, and mixotrophy on the growth and photosynthetic response of 15 phytoplankton taxa to oil and Corexit. We collected growth and photosynthetic data on five algal cultures. These responses could be separated into resistant (Tetraselmis astigmatica, Ochromonas sp., Heterocapsa pygmaea) and sensitive (Micromonas pusilla, Prorocentrum minimum). We combined this data with 10 species previously studied and found that cell size is most important in determining the biomass response to oil, whereas motility/mixotrophy is more important in the dispersed oil. Our analysis accounted for a third of the variance observed, so further work is needed to identify other factors that contribute to oil resistance.


Asunto(s)
Contaminación por Petróleo , Petróleo , Fitoplancton , Contaminantes Químicos del Agua , Golfo de México , Lípidos , Tensoactivos
7.
PLoS One ; 15(7): e0235473, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32634146

RESUMEN

Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T. pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal EPS (< 0.7 µm to > 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.


Asunto(s)
Diatomeas/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Petróleo/toxicidad , Tensoactivos/efectos adversos , Organismos Acuáticos/efectos de los fármacos , Humanos , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Hidrocarburos Policíclicos Aromáticos/química , Agua de Mar/química , Tensoactivos/química , Contaminantes Químicos del Agua/efectos adversos , Contaminantes Químicos del Agua/química
8.
Mar Pollut Bull ; 151: 110798, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056593

RESUMEN

Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.


Asunto(s)
Petróleo , Fitoplancton/fisiología , Contaminantes Químicos del Agua , Diatomeas , Dinoflagelados , Ribosomas
9.
Harmful Algae ; 86: 55-63, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31358277

RESUMEN

The diatom genus Pseudo-nitzschia is a common component of phytoplankton communities in the Gulf of Mexico and is potentially toxic as some species produce the potent neurotoxin domoic acid. The impact of oil and chemical dispersants on Pseudo-nitzschia spp. and domoic acid production have not yet been studied; preliminary findings from a mesocosm experiment suggest this genus may be particularly resilient. A toxicological study was conducted using a colony of Pseudo-nitzschia sp. isolated from a station off the coast of Louisiana in the Gulf of Mexico. The cultures were exposed to a water accommodated fraction (WAF) of oil and a diluted chemically enhanced WAF (DCEWAF) which was a mix of oil and dispersant (20:1). Exposure to WAF induced a lag phase but did not inhibit growth rates once in exponential growth. Cultures grown in DCEWAF did not experience a lag phase but had significantly lower growth rates than the Control and WAF cultures. The cellular quota of domoic acid was higher in cultures treated with DCEWAF and WAF relative to their control values, and half of the domoic acid had leaked out of the cells into the surrounding seawater in the DCEWAF cultures while all the domoic acid remained inside the cells in WAF-treated cultures. These results suggest that the presence of oil could lead to toxic blooms, but that the application of dispersant could decrease bioaccumulation of domoic acid through the food web.


Asunto(s)
Diatomeas , Ácido Kaínico , Golfo de México , Ácido Kaínico/análogos & derivados , Fitoplancton
10.
Aquat Toxicol ; 206: 43-53, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30448744

RESUMEN

During the 2010 Deepwater Horizon oil spill, the chemical dispersant Corexit was applied over vast areas of the Gulf of Mexico. Marine phytoplankton play a key role in aggregate formation through the production of extracellular polymeric materials (EPS), an important step in the biological carbon pump. This study examined the impacts of oil and dispersants on the composition and physiology of natural marine phytoplankton communities from the Gulf of Mexico during a 72-hour mesocosm experiment and consequences to carbon export. The communities were treated using the water accommodated fraction (WAF) of oil, which was produced by adding Macondo surrogate oil to natural seawater and mixed for 24 h in the dark. A chemically enhanced WAF (CEWAF) was made in a similar manner, but using a mixture of oil and the dispersant Corexit in a 20:1 ratio as well as a diluted CEWAF (DCEWAF). Phytoplankton communities exposed to WAF showed no significant changes in PSII quantum yield (Fv/Fm) or electron transfer rates (ETRmax) compared to Control communities. In contrast, both Fv/Fm and ETRmax declined rapidly in communities treated with either CEWAF or DCEWAF. Analysis of other photophysiological parameters showed that photosystem II (PSII) antenna size and PSII connectivity factor were not altered by exposure to DCEWAF, suggesting that processes downstream of PSII were affected. The eukaryote community composition in each experimental tank was characterized at the end of the 72 h exposure time using 18S rRNA sequencing. Diatoms dominated the communities in both the control and WAF treatments (52 and 56% relative abundance respectively), while in CEWAF and DCEWAF treatments were dominated by heterotrophic Euglenozoa (51 and 84% respectively). Diatoms made up the largest relative contribution to the autotrophic eukaryote community in all treatments. EPS concentration was four times higher in CEWAF tanks compared to other treatments. Changes in particle size distributions (a proxy for aggregates) over time indicated that a higher degree of particle aggregation occurred in both the CEWAF and DCEWAF treatments than the WAF or Controls. Our results demonstrate that chemically dispersed oil has more negative impacts on photophysiology, phytoplankton community structure and aggregation dynamics than oil alone, with potential implications for export processes that affect the distribution and turnover of carbon and oil in the water column.


Asunto(s)
Lípidos/toxicidad , Petróleo/toxicidad , Fitoplancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Diatomeas/efectos de los fármacos , Golfo de México , Contaminación por Petróleo/análisis , Agua de Mar/química
11.
Mar Pollut Bull ; 130: 170-178, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29866543

RESUMEN

Phytoplankton alter their macromolecule composition in response to changing environmental conditions. Often these changes are consistent and can be used as indicators to predict their exposure to a given condition. FTIR-spectroscopy is a powerful tool that provides rapid snapshot of microbial samples. We used FTIR to develop signature macromolecular composition profiles of three cultures: Skeletonema costatum, Emiliania huxleyi, and Navicula sp., exposed to chemically enhanced water accommodated oil fraction (CEWAF) in artificial seawater and control. Using a multivariate model created with a Partial Least Square Discriminant Analysis of the FTIR-spectra, classification of CEWAF exposed versus control samples was possible. This model was validated using aggregate samples from a mesocosm study. Analysis of spectra and PCA-loadings plot showed changes to carbohydrates and proteins in response to CEWAF. Overall we developed a robust multivariate model that can be used to identify if a phytoplankton sample has been exposed to oil with dispersant.


Asunto(s)
Monitoreo del Ambiente/métodos , Petróleo/toxicidad , Fitoplancton/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Carbohidratos , Diatomeas/química , Diatomeas/efectos de los fármacos , Análisis Discriminante , Haptophyta/química , Haptophyta/efectos de los fármacos , Modelos Teóricos , Petróleo/análisis , Contaminación por Petróleo/efectos adversos , Contaminación por Petróleo/análisis , Fitoplancton/química , Análisis de Componente Principal , Agua de Mar , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Front Microbiol ; 9: 798, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740422

RESUMEN

Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community - α- and ß-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase - were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA