Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(4): 907-919, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27499021

RESUMEN

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , AMP Cíclico/metabolismo , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Microscopía Electrónica , Complejos Multiproteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990469

RESUMEN

G protein-coupled receptors (GPCRs) are gatekeepers of cellular homeostasis and the targets of a large proportion of drugs. In addition to their signaling activity at the plasma membrane, it has been proposed that their actions may result from translocation and activation of G proteins at endomembranes-namely endosomes. This could have a significant impact on our understanding of how signals from GPCR-targeting drugs are propagated within the cell. However, little is known about the mechanisms that drive G protein movement and activation in subcellular compartments. Using bioluminescence resonance energy transfer (BRET)-based effector membrane translocation assays, we dissected the mechanisms underlying endosomal Gq trafficking and activity following activation of Gq-coupled receptors, including the angiotensin II type 1, bradykinin B2, oxytocin, thromboxane A2 alpha isoform, and muscarinic acetylcholine M3 receptors. Our data reveal that GPCR-promoted activation of Gq at the plasma membrane induces its translocation to endosomes independently of ß-arrestin engagement and receptor endocytosis. In contrast, Gq activity at endosomes was found to rely on both receptor endocytosis-dependent and -independent mechanisms. In addition to shedding light on the molecular processes controlling subcellular Gq signaling, our study provides a set of tools that will be generally applicable to the study of G protein translocation and activation at endosomes and other subcellular organelles, as well as the contribution of signal propagation to drug action.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Endocitosis/fisiología , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Receptores Acoplados a Proteínas G/fisiología , Células HEK293 , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/fisiología , Transducción de Señal/fisiología , beta-Arrestinas/fisiología
3.
Mol Pharmacol ; 102(3): 139-149, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779859

RESUMEN

Activation of G protein-coupled receptors by agonists may result in the activation of one or more G proteins and recruitment of arrestins. The extent of the activation of each of these pathways depends on the intrinsic efficacy of the ligand. Quantification of intrinsic efficacy relative to a reference compound is essential for the development of novel compounds. In the operational model, changes in efficacy can be compensated by changes in the "functional" affinity, resulting in poorly defined values. To separate the effects of ligand affinity from the intrinsic activity of the receptor, we developed a Michaelis-Menten based quantification of G protein activation bias that uses experimentally measured ligand affinities and provides a single measure of ligand efficacy. We used it to evaluate the signaling of a promiscuous model receptor, the Vasopressin V2 receptor (V2R). Using BRET-based biosensors, we show that the V2R engages many different G proteins across all G protein subfamilies in response to its primary endogenous agonist, arginine vasopressin, including Gs and members of the Gi/o and G12/13 families. These signaling pathways are also activated by the synthetic peptide desmopressin, oxytocin, and the nonmammalian hormone vasotocin. We compared bias quantification using the operational model with Michaelis-Menten based quantification; the latter accurately quantified ligand efficacies despite large difference in ligand affinities. Together, these results showed that the V2R is promiscuous in its ability to engage several G proteins and that its' signaling profile is biased by small structural changes in the ligand. SIGNIFICANCE STATEMENT: By modelling the G protein activation as Michaelis-Menten reaction, we developed a novel way of quantifying signalling bias. V2R activates, or at least engages, G proteins from all G protein subfamilies, including Gi2, Gz, Gq, G12, and G13. Their relative activation may explain its Gs-independent signalling.


Asunto(s)
Receptores de Vasopresinas , Transducción de Señal , Arrestinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos
4.
Nat Chem Biol ; 15(1): 11-17, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510194

RESUMEN

Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.


Asunto(s)
Misoprostol/química , Subtipo EP3 de Receptores de Prostaglandina E/química , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dinoprostona/análogos & derivados , Dinoprostona/química , Dinoprostona/metabolismo , Humanos , Misoprostol/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Subtipo EP3 de Receptores de Prostaglandina E/agonistas , Subtipo EP3 de Receptores de Prostaglandina E/genética , Transducción de Señal , Agua/química
5.
Nat Chem Biol ; 15(2): 206, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30573766

RESUMEN

In the version of this article originally published, the present address for Petr Popov was incorrectly listed as 'Koltech Institute of Science & Technology, Moscow, Russia'. The correct present address is 'Skolkovo Institute of Science and Technology, Moscow, Russia'. The error has been corrected in the HTML and PDF versions of the paper.

6.
Mol Pharmacol ; 93(6): 581-591, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572336

RESUMEN

GPR40 is a clinically validated molecular target for the treatment of diabetes. Many GPR40 agonists have been identified to date, with the partial agonist fasiglifam (TAK-875) reaching phase III clinical trials before its development was terminated due to off-target liver toxicity. Since then, attention has shifted toward the development of full agonists that exhibit superior efficacy in preclinical models. Full agonists bind to a distinct binding site, suggesting conformational plasticity and a potential for biased agonism. Indeed, it has been suggested that alternative pharmacology may be required for meaningful efficacy. In this study, we described the discovery and characterization of Compound A, a newly identified GPR40 allosteric full agonist highly efficacious in human islets at potentiating glucose-stimulated insulin secretion. We compared Compound A-induced GPR40 activity to that induced by both fasiglifam and AM-1638, another allosteric full agonist previously reported to be highly efficacious in preclinical models, at a panel of G proteins. Compound A was a full agonist at both the Gαq and Gαi2 pathways, and in contrast to fasiglifam Compound A also induced Gα12 coupling. Compound A and AM-1638 displayed similar activity at all pathways tested. The Gα12/Gα13-mediated signaling pathway has been linked to protein kinase D activation as well as actin remodeling, well known to contribute to the release of insulin vesicles. Our data suggest that the pharmacology of GPR40 is complex and that Gα12/Gα13-mediated signaling, which may contribute to GPR40 agonists therapeutic efficacy, is a specific property of GPR40 allosteric full agonists.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Glucosa/metabolismo , Secreción de Insulina/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Benzofuranos/farmacología , Células CHO , Línea Celular , Cricetulus , Células HEK293 , Humanos , Hipoglucemiantes/farmacología , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonas/farmacología
7.
Mol Pharmacol ; 85(3): 492-509, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366668

RESUMEN

The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the ß2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 ß-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and safety.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Descubrimiento de Drogas/métodos , Endocitosis/fisiología , Células HEK293 , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología
8.
Commun Biol ; 7(1): 250, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429428

RESUMEN

Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
9.
Sci Signal ; 17(841): eadi4747, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889226

RESUMEN

G protein-coupled receptors (GPCRs) regulate cellular signaling processes by coupling to diverse combinations of heterotrimeric G proteins composed of Gα, Gß, and Gγ subunits. Biosensors based on bioluminescence resonance energy transfer (BRET) have advanced our understanding of GPCR functional selectivity. Some BRET biosensors monitor ligand-induced conformational changes in the receptor or G proteins, whereas others monitor the recruitment of downstream effectors to sites of G protein activation. Here, we compared the ability of conformation-and activation-based BRET biosensors to assess the coupling of various class A and B GPCRs to specific Gα proteins in cultured cells. These GPCRs included serotonin 5-HT2A and 5-HT7 receptors, the GLP-1 receptor (GLP-1R), and the M3 muscarinic receptor. We observed different signaling profiles between the two types of sensors, highlighting how data interpretation could be affected by the nature of the biosensor. We also found that the identity of the Gßγ subunits used in the assay could differentially influence the selectivity of a receptor toward Gα subtypes, emphasizing the importance of the receptor-Gßγ pairing in determining Gα coupling specificity. Last, the addition of epitope tags to the receptor could affect stoichiometry and coupling selectivity and yield artifactual findings. These results highlight the need for careful sensor selection and experimental design when probing GPCR-G protein coupling.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Técnicas Biosensibles , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Células HEK293 , Técnicas Biosensibles/métodos , Conformación Proteica , Transducción de Señal , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética
10.
Mol Pharmacol ; 81(3): 309-18, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22108912

RESUMEN

Activation of G-protein-coupled receptors (GPCRs) results in a variety of cellular responses, such as binding to the same receptor of different ligands that activate distinct downstream cascades. Additional signaling complexity is achieved when two or more receptors are integrated into one signaling unit. Lateral receptor interactions can allosterically modulate the receptor response to a ligand, which creates a mechanism for tissue-specific fine tuning, depending on the cellular receptor coexpression pattern. GPCR homomers or heteromers have been explored widely for GPCR classes A and C but to lesser extent for class B. In the present study, we used bioluminescence resonance energy transfer (BRET) techniques, calcium flux measurements, and microscopy to study receptor interactions within the glucagon receptor family. We found basal BRET interactions for some of the receptor combinations tested that decreased upon ligand binding. A BRET increase was observed exclusively for the gastric inhibitory peptide (GIP) receptor and the glucagon-like peptide 1 (GLP-1) receptor upon binding of GLP-1 that could be reversed with GIP addition. The interactions of GLP-1 receptor and GIP receptor were characterized with BRET donor saturation studies, shift experiments, and tests of glucagon-like ligands. The heteromer displayed specific pharmacological characteristics with respect to GLP-1-induced ß-arrestin recruitment and calcium flux, which suggests a form of allosteric regulation between the receptors. This study provides the first example of ligand-induced heteromer formation in GPCR class B. In the body, the receptors are functionally related and coexpressed in the same cells. The physiological evidence for this heteromerization remains to be determined.


Asunto(s)
Péptido 1 Similar al Glucagón/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Línea Celular , Endocitosis , Transferencia de Energía , Péptido 1 Similar al Glucagón/química , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
RNA ; 16(3): 585-97, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20075165

RESUMEN

Transport of mRNA is an efficient mechanism to target proteins to specific regions of a cell. Although it is well documented that mRNAs are transported in ribonucleoprotein (RNP) complexes, several of the mechanisms involved in complex formation and localization are poorly understood. Staufen (Stau) 1, a double-stranded RNA-binding protein, is a well accepted marker of mRNA transport complexes. In this manuscript, we provide evidence that Stau1 self-associates in live cells using immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays. The double-stranded RNA-binding domains dsRBD3 and dsRBD4 contributed about half of the signal, suggesting that Stau1 RNA-binding activity is involved in Stau1 self-association. Protein-protein interaction also occurred, via dsRBD5 and dsRBD2, as shown by in vitro pull-down, yeast two-hybrid, and BRET assays in live cells. Interestingly, Stau1 self-association contributes to the formation of oligomeric complexes as evidenced by the coexpression of split Renilla luciferase halves covalently linked to Stau1 in a protein complementation assay (PCA) combined with a BRET assay with Stau1-YFP. Moreover, we showed that these higher-order Stau1-containing complexes carry RNAs when the RNA stain SYTO 14 was used as the energy acceptor in the PCA/BRET assay. The oligomeric composition of Stau1-containing complexes and the presence of specific mRNAs have been confirmed by biochemical approaches involving two successive immunoprecipitations of Stau1-tagged molecules followed by qRT-PCR amplification. Altogether, these results indicate that Stau1 self-associates in mRNPs via its multiple functional domains that can select mRNAs to be transported and establish protein-protein interaction.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Transporte de ARN , Proteínas de Unión al ARN/metabolismo , Línea Celular , Humanos , Inmunoprecipitación , Mediciones Luminiscentes , Multimerización de Proteína , Ribonucleoproteínas/metabolismo
12.
Eur J Pharmacol ; 927: 175043, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35598847

RESUMEN

Prostaglandins are bioactive lipids involved in many physiological and pathophysiological conditions, such as pain, atherosclerosis, type II diabetes, and parturition. Prostaglandin E2 (PGE2) activates four G protein-coupled receptors (GPCRs), named the PGE2 types 1-4 receptors (EP1-4), to elicit the intracellular signaling responsible for their physiological actions. There are more than twelve EP3 isoforms in humans that differ only by the sequence of their C-termini. However, the signaling mechanisms engaged by the various isoforms have never been clearly defined. In this study, we used a recently described BRET-based biosensor technology to define the signaling profiles for each of the human isoforms on a selection of signaling pathways using the agonists, PGE2 and sulprostone, and the purportedly EP3-specific antagonist L798106. We found that L798106 is a biased agonist of the Gαz pathway for some human EP3 isoforms, an effect that is not detected in the close ortholog mouse EP3 isoform α. We also found that the presence of a threonine residue at position 107 in the binding site of human EP3, which is a serine in most other species including mice, is important for L798106-mediated Gαz efficacy. Given the reported importance of EP3-Gαz signaling on the potential therapeutic efficacy of EP3 and since many preclinical studies for these mechanisms have been performed in rodents, this finding demonstrates the importance of determining a detailed signaling profile of ligands for different species and receptor isoforms, which constitutes an important step to better understand the therapeutic potential of the EP3.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Ratones , Dolor , Isoformas de Proteínas/metabolismo , Receptores de Prostaglandina E/metabolismo , Transducción de Señal
13.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302493

RESUMEN

The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and ßarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.


Asunto(s)
Técnicas Biosensibles , Proteínas de Unión al GTP , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
14.
J Biol Chem ; 285(27): 20588-94, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20452976

RESUMEN

Activator of G-protein signaling-4 (AGS4), via its three G-protein regulatory motifs, is well positioned to modulate G-protein signal processing by virtue of its ability to bind Galpha(i)-GDP subunits free of Gbetagamma. Apart from initial observations on the biochemical activity of the G-protein regulatory motifs of AGS4, very little is known about the nature of the AGS4-G-protein interaction, how this interaction is regulated, or where the interaction takes place. As an initial approach to these questions, we evaluated the interaction of AGS4 with Galpha(i1) in living cells using bioluminescence resonance energy transfer (BRET). AGS4 and Galpha(i1) reciprocally tagged with either Renilla luciferase (RLuc) or yellow fluorescent protein (YFP) demonstrated saturable, specific BRET signals. BRET signals observed between AGS4-RLuc and Galpha(i1)-YFP were reduced by G-protein-coupled receptor activation, and this agonist-induced reduction in BRET was blocked by pertussis toxin. In addition, specific BRET signals were observed for AGS4-RLuc and alpha(2)-adrenergic receptor-Venus, which were Galpha(i)-dependent and reduced by agonist, indicating that AGS4-Galpha(i) complexes are receptor-proximal. These data suggest that AGS4-Galpha(i) complexes directly couple to a G-protein-coupled receptor and may serve as substrates for agonist-induced G-protein activation.


Asunto(s)
Reguladores de Proteínas de Unión al GTP/fisiología , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Genes Reporteros , Homeostasis , Humanos , Riñón , Luciferasas/genética , Proteínas Luminiscentes/fisiología , Mutagénesis Sitio-Dirigida , Proteínas RGS/genética , Receptores Adrenérgicos alfa 2/fisiología , Receptores Acoplados a Proteínas G/genética , Renilla/enzimología , Transfección
15.
J Biol Chem ; 285(44): 33949-58, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20716524

RESUMEN

G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gα(i) free of Gßγ providing an unusual scaffold for the "G-switch" and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gα(i) signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gα(i1) tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α(2)-adrenergic receptors or µ-opioid receptors reduced AGS3-RLuc·Gα(i1)-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gßγ sequestration with the carboxyl terminus of GRK2. Gα(i)-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gα(i) and/or Gα(o) indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαßγ and GPR-Gα(i) offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/química , Línea Celular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Regulación de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides mu/metabolismo , Renilla
16.
FASEB J ; 24(12): 4733-43, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20696855

RESUMEN

Traditionally, G-protein-coupled receptor (GPCR) interactions with their G proteins and regulatory proteins, GPCR kinases (GRKs) and arrestins, are described as sequential events involving rapid assemblies/disassemblies. To directly monitor the dynamics of these interactions in living cells, we combined two spectrally resolved bioluminescence and one fluorescence resonance energy transfer (RET) methods. The RET combination analysis revealed that stimulation of the α(2A)-adrenergic receptor (α(2A)AR) leads to the recruitment of GRK2 at a receptor still associated with the Gα(i1)ß(1)γ(2) complex. The interaction kinetics of GRKs with Gγ(2) (2.8 ± 0.4 s) and α(2A)AR (5.2 ± 0.5 s) were similar to that of the receptor-promoted change in RET between Gα(i1) and Gγ(2) (5.2 ± 1.2 s), and persisted until the translocation of ßarrestin2 to the receptor, indicating that GRK2 remains associated to the receptor/G-protein complex for longer periods than anticipated. Moreover, GRK2 or a kinase-deficient GRK2 mutant, but not GRK5, potentiated the receptor-promoted changes in RET between Gα(i1) and Gγ(2) and abrogated the α(2A)AR-stimulated calcium response, suggesting that the recruitment of GRK2 to the complex contributes to the structural rearrangement and functional regulation of the signaling unit, independently of the kinase activity. RET combination analysis revealed unanticipated dynamics in GPCR signaling and will be applicable to many biological systems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Línea Celular , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Unión Proteica , Receptores Adrenérgicos alfa 2/genética
17.
Chem Sci ; 12(33): 10990-11003, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34522296

RESUMEN

Brain functions rely on neurotransmitters that mediate communication between billions of neurons. Disruption of this communication can result in a plethora of psychiatric and neurological disorders. In this work, we combine molecular dynamics simulations, live-cell biosensor and electrophysiological assays to investigate the action of the neurotransmitter dopamine at the dopaminergic D2 receptor (D2R). The study of dopamine and closely related chemical probes reveals how neurotransmitter binding translates into the activation of distinct subsets of D2R effectors (i.e.: Gi2, GoB, Gz and ß-arrestin 2). Ligand interactions with key residues in TM5 (S5.42) and TM6 (H6.55) in the D2R binding pocket yield a dopamine-like coupling signature, whereas exclusive TM5 interaction is typically linked to preferential G protein coupling (in particular GoB) over ß-arrestin. Further experiments for serotonin receptors indicate that the reported molecular mechanism is shared by other monoaminergic neurotransmitter receptors. Ultimately, our study highlights how sequence variation in position 6.55 is used by nature to fine-tune ß-arrestin recruitment and in turn receptor signaling and internalization of neurotransmitter receptors.

18.
Cell Rep ; 35(11): 109246, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133934

RESUMEN

Succinate functions both as a classical TCA cycle metabolite and an extracellular metabolic stress signal sensed by the mainly Gi-coupled succinate receptor SUCNR1. In the present study, we characterize and compare effects and signaling pathways activated by succinate and both classes of non-metabolite SUCNR1 agonists. By use of specific receptor and pathway inhibitors, rescue in G-protein-depleted cells and monitoring of receptor G protein activation by BRET, we identify Gq rather than Gi signaling to be responsible for SUCNR1-mediated effects on basic transcriptional regulation. Importantly, in primary human M2 macrophages, in which SUCNR1 is highly expressed, we demonstrate that physiological concentrations of extracellular succinate act through SUCNR1-activated Gq signaling to efficiently regulate transcription of immune function genes in a manner that hyperpolarizes their M2 versus M1 phenotype. Thus, sensing of stress-induced extracellular succinate by SUCNR1 is an important transcriptional regulator in human M2 macrophages through Gq signaling.


Asunto(s)
Espacio Extracelular/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Ácido Succínico/metabolismo , Arrestinas/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Células HEK293 , Humanos , Ligandos , Macrófagos/inmunología , Masculino , Modelos Biológicos , Subunidades de Proteína/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Activación Transcripcional/genética , Fosfolipasas de Tipo C/metabolismo
19.
Biophys J ; 99(12): 4037-46, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21156147

RESUMEN

Bioluminescence resonance energy transfer (BRET) is increasingly being used to monitor protein-protein interactions and cellular events in cells. However, the ability to monitor multiple events simultaneously is limited by the spectral properties of the existing BRET partners. Taking advantage of newly developed Renilla luciferases and blue-shifted fluorescent proteins (FPs), we explored the possibility of creating novel BRET configurations using a single luciferase substrate and distinct FPs. Three new (to our knowledge) BRET assays leading to distinct color bioluminescence emission were generated and validated. The spectral properties of two of the FPs used (enhanced blue (EB) FP2 and mAmetrine) and the selection of appropriate detection filters permitted the concomitant detection of two independent BRET signals, without cross-interference, in the same cells after addition of a unique substrate for Renilla luciferase-II, coelentrazine-400a. Using individual BRET-based biosensors to monitor the interaction between G-protein-coupled receptors and G-protein subunits or activation of different G-proteins along with the production of a second messenger, we established the proof of principle that two new BRET configurations can be multiplexed to simultaneously monitor two dependent or independent cellular events. The development of this new multiplexed BRET configuration opens the way for concomitant monitoring of various independent biological processes in living cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/metabolismo , Color , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo
20.
Nephron Physiol ; 114(1): p1-10, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19816050

RESUMEN

BACKGROUND/AIMS: Mutations in the type 2 vasopressin receptor gene (AVPR2) underlie X-linked recessive nephrogenic diabetes insipidus (NDI). Here, we report on a family with a mutation in AVPR2, c.262G>A (p.V88M). This recurrently identified mutation was previously shown to abolish AVPR2 function, yet in some affected members, urine osmolalities of up to 570 mosm/kg were observed. We detail the variable clinical phenotype and investigate its molecular basis. METHODS: Retrospective analysis of clinical data and in vitro assessment of wild-type and V88M-mutant receptors. RESULTS: Clinical data were available on 6 patients. Four of these demonstrated a substantial increase in urinary concentration after 1-desamino[8-D-arginine] vasopressin, consistent with partial NDI, while 2 did not respond. In vitro analysis revealed a reduced cell surface expression and decreased binding affinity for arginine-vasopressin of the mutant receptor, leading to blunted signaling activity. Treatment with the pharmacological chaperone SR121463 enhanced cell surface expression. CONCLUSION: The V88M mutation is associated with phenotypical diversity, which may be explained by the fact that both the expression level and the hormone-binding affinity are affected by the mutation. Our results provide a rational basis for treatment trials with vasopressin analogues in combination with pharmacologic chaperones in patients with this recurrently identified mutation.


Asunto(s)
Sustitución de Aminoácidos , Diabetes Insípida Nefrogénica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación , Receptores de Vasopresinas/genética , Adolescente , Adulto , Niño , AMP Cíclico/metabolismo , Desamino Arginina Vasopresina , Diabetes Insípida Nefrogénica/orina , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/orina , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Morfolinas/farmacología , Natriuresis , Linaje , Fenotipo , Poliuria/etiología , Unión Proteica/genética , Receptores de Vasopresinas/química , Receptores de Vasopresinas/fisiología , Proteínas Recombinantes de Fusión/fisiología , Estudios Retrospectivos , Sistemas de Mensajero Secundario , Compuestos de Espiro/farmacología , Transfección , Orina/química , Inactivación del Cromosoma X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA