Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sensors (Basel) ; 14(7): 12059-69, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25004156

RESUMEN

We report on the aptadetection of chloramphenicol (CAP) using electrochemical impedance spectroscopy. The detection principle is based on the changes of the interfacial properties of the electrode after the interaction of the ssDNA aptamers with the target molecules. The electrode surface is partially blocked due to the formation of the aptamer-CAP complex, resulting in an increase of the interfacial electron-transfer resistance of the redox probe detected by electrochemical impedance spectroscopy or cyclic voltammetry. We observed that the ratio of polarization resistance had a linear relationship with the concentrations of CAP in the range of 1.76-127 nM, and a detection limit of 1.76 nM was obtained. The covalent binding of CAP-aptamer on the electrode surface combined with the unique properties of aptamers and impedimetric transduction leads to the development of a stable and sensitive electrochemical aptasensor for CAP.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Cloranfenicol/análisis , Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Antibacterianos/análisis , Antibacterianos/química , Cloranfenicol/química , Diseño de Equipo , Análisis de Falla de Equipo , Peso Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
ChemSusChem ; : e202400437, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712937

RESUMEN

Carbon capture and utilization (CCU) are technologies sought to reduce the level of CO2 in the atmosphere. Industrial carbon capture is associated with energetic penalty, thus there is an opportunity to research alternatives. In this work, spectroelectrochemistry was used to analyze the electrochemical CO2 reduction (eCO2R) in CO2 saturated monoethanolamine (MEA)-based capture solutions, in a novel CCU process. The in situ Fourier transform infrared (FTIR) spectroscopy experiments show that at the Bi catalyst, the active species involved in the eCO2R is the dissolved CO2 in solution, and not carbamate. In addition, the products of eCO2R were evaluated under flow, using commercial Bi2O3 NP as catalyst. Formate and acetate were detected, with normalized FE for acetate up to 14.5 %, a remarkable result, considering the catalyst used. Acetate is formed either in the presence of cetrimonium bromide (CTAB) as surfactant or at higher current density (>-100 mA cm-2) and the results enabled the proposition of a pathway for its production. This work sheds light on the complex reaction environment of a capture medium electrolyte and is thus relevant for an improved understanding of the conversion of CO2 into value-added products and to evaluate the feasibility of a combined CCU approach.

3.
ACS Appl Mater Interfaces ; 16(6): 6931-6947, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38127786

RESUMEN

The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.

4.
ChemElectroChem ; 10(3): e202200928, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082101

RESUMEN

Complex geometries for electrodes are a great challenge in electrochemical applications. Slurry electrodes have been one example, which use complex flow distributors to improve the charge transfer between the current collector and the slurry particles. Here we use titanium-based flow distributors produced by indirect 3D-printing to improve further the electron transfer from highly conductive flow distributors to the slurry particles for a vanadium redox flow application. The titanium static mixers are directly coated with graphite to increase the activity for vanadium redox reactions. Increasing layers of graphite have shown an optimum for the positive and negative electrolytes. The application of heat treatment on the electrodes improves the anodic and cathodic current peaks drastically. Testing the highly conductive static mixers in a self-made redox flow cell results in 110 mA cm-2 discharge polarization.

5.
Inflamm Bowel Dis ; 29(4): 589-601, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36239641

RESUMEN

BACKGROUND: Intestinal mucosal healing is nowadays preferred as the therapeutic endpoint in inflammatory bowel disease (IBD), but objective measurements at the molecular level are lacking. Because dysregulated mucin expression is suggested to be involved in mucosal barrier dysfunction in IBD, we investigated mucin expression in association with barrier mediators and clinical characteristics in colonic tissue of a pediatric IBD population. METHODS: In this cross-sectional monocentric study, we quantified messenger RNA (mRNA) expression of mucins, intercellular junctions, and cell polarity complexes in inflamed and noninflamed colonic biopsies from pediatric IBD (n = 29) and non-IBD (n = 15) patients. We then validated mucin expression at protein level and correlated mucin mRNA expression with expression of barrier mediators and clinical data. RESULTS: The expression of MUC1, MUC3A, MUC4, and MUC13 was increased in the inflamed colon of pediatric IBD patients compared with the noninflamed colon of non-IBD control subjects. Especially MUC13 mRNA expression associated with the expression of barrier mediators, including CDH1, OCLN, and TJP2. MUC1 and MUC3B mRNA expression in combination with calprotectin levels most accurately discriminated IBD patients from non-IBD control subjects (90.6% area under the receiver-operating characteristic curve [AUCROC], 92.0% sensitivity, 73.7% specificity), whereas aberrant mRNA expression of MUC1, MUC3A, MUC4, and MUC13 was distinctive for ulcerative colitis and of MUC3B for Crohn's disease. Furthermore, expression of MUC3A, MUC3B, and MUC4 correlated with clinical disease activity (ie, Pediatric Ulcerative Colitis Activity Index and Pediatric Crohn's Disease Activity Index), and of MUC1, MUC2, MUC4, and MUC13 with endoscopic colitis severity in ulcerative colitis patients. CONCLUSIONS: Colonic mucin expression is disturbed in pediatric IBD patients and associates with disease activity and presentation, suggesting its use as molecular marker to aid in disease diagnosis and management.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Niño , Colitis Ulcerosa/patología , Mucinas/metabolismo , Estudios Transversales , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Cells ; 12(9)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174625

RESUMEN

Overexpression of the transmembrane mucin MUC13, as seen in inflammatory bowel diseases (IBD), could potentially impact barrier function. This study aimed to explore how inflammation-induced MUC13 disrupts epithelial barrier integrity by affecting junctional protein expression in IBD, thereby also considering the involvement of MUC1. RNA sequencing and permeability assays were performed using LS513 cells transfected with MUC1 and MUC13 siRNA and subsequently stimulated with IL-22. In vivo intestinal permeability and MUC13-related signaling pathways affecting barrier function were investigated in acute and chronic DSS-induced colitis wildtype and Muc13-/- mice. Finally, the expression of MUC13, its regulators and other barrier mediators were studied in IBD and control patients. Mucin knockdown in intestinal epithelial cells affected gene expression of several barrier mediators in the presence/absence of inflammation. IL-22-induced MUC13 expression impacted barrier function by modulating the JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK signaling pathways, with a cooperating role for MUC1. In response to DSS, MUC13 was protective during the acute phase whereas it caused more harm upon chronic colitis. The pathways accounting for the MUC13-mediated barrier dysfunction were also altered upon inflammation in IBD patients. These novel findings indicate an active role for aberrant MUC13 signaling inducing intestinal barrier dysfunction upon inflammation with MUC1 as collaborating partner.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Mucinas , Animales , Ratones , Colitis/inducido químicamente , Colitis/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo , Quinasas Asociadas a rho/metabolismo , Interleucina-22
7.
J Inorg Biochem ; 238: 112063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370505

RESUMEN

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Hemo/química , Sistema Nervioso/metabolismo
8.
J Sep Sci ; 35(18): 2407-13, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22997031

RESUMEN

A membrane microcontactor suitable to perform liquid-liquid extraction as well as evaporation in order to conduct enrichment steps in sample preparation of organ samples has been designed, fabricated, and characterized. Spacers of 100- or 200-µm high were constructed in a metal substrate with a channel width of 13 mm and the extraction kinetics in these channels was evaluated. The spacers were designed such that at the entrance and exit region a uniform flow distribution could take place and that a uniform flow profile could be guaranteed along the channel, hence allowing a large freedom in sample volume to be processed. The extraction and evaporation kinetic behavior of the device was first evaluated by extraction of a drug candidate (4-(2,5-dimethyl-pyrrol-1-y1)-2-hydroxybenzoic acid). To evaluate the device under more challenging working conditions, a homogenized mice kidney sample containing the drug candidate that was administered in life condition was cleaned and enriched with the extraction and evaporation modules and characterized by high-performance liquid chromatography, yielding an overall analysis time of 15-20 min per sample only. The system has the potential to be operated in a continuous fashion, making it appealing to be implemented in screening or high-throughput applications.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/instrumentación , Métodos Analíticos de la Preparación de la Muestra/métodos , Riñón/química , Microextracción en Fase Líquida/instrumentación , Pirroles/análisis , Salicilatos/análisis , Animales , Cromatografía Líquida de Alta Presión/instrumentación , Cinética , Ratones
9.
ACS Appl Mater Interfaces ; 14(27): 30760-30771, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35764406

RESUMEN

CO2 electrolyzers require gaseous CO2 or saturated CO2 solutions to achieve high energy efficiency (EE) in flow reactors. However, CO2 capture and delivery to electrolyzers are in most cases responsible for the inefficiency of the technology. Recently, bicarbonate zero-gap flow electrolyzers have proven to convert CO2 directly from bicarbonate solutions, thus mimicking a CO2 capture medium, obtaining high Faradaic efficiency (FE) and partial current density (CD) toward carbon products. However, since bicarbonate electrolyzers use a bipolar membrane (BPM) as a separator, the cell voltage (VCell) is high, and the system becomes less efficient compared to analogous CO2 electrolyzers. Due to the role of the bicarbonate both as a carbon donor and proton donor (in contrast to gas-fed CO2 electrolyzers), optimization by using know-how from conventional gas-fed CO2 electrolyzers is not valid. In this study, we have investigated how different engineering aspects, widely studied for upscaling gas-fed CO2 electrolyzers, influence the performance of bicarbonate zero-gap flow electrolyzers when converting CO2 to formate. The temperature, flow rate, and concentration of the electrolyte are evaluated in terms of FE, productivity, VCell, and EE in a broad range of current densities (10-400 mA cm-2). A CD of 50 mA cm-2, room temperature, high flow rate (5 mL cm-2) of the electrolyte, and high carbon load (KHCO3 3 M) are proposed as potentially optimal parameters to benchmark a design to achieve the highest EE (27% is obtained this way), one of the most important criteria when upscaling and evaluating carbon capture and conversion technologies. On the other hand, at high CD (>300 mA cm-2), low flow rate (0.5 mL cm-2) has the highest interest for downstream processing (>40 g L-1 formate is obtained this way) at the cost of a low EE (<10%).

10.
Lancet Gastroenterol Hepatol ; 7(5): 455-471, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397245

RESUMEN

Mucins are the gatekeepers of the mucosal barrier of the gastrointestinal tract and are aberrantly expressed in various gastrointestinal pathologies, including pathogen infection, inflammation, and uncontrolled growth and spread of abnormal cells. Although several studies have emphasised the role of mucins in dysfunction of the gastrointestinal mucosal barrier, they are often still considered to be passive mediators of this barrier instead of regulators or modulators. In this Review, we discuss the interactions between mucins and gastrointestinal barrier function during health and disease. We will focus on the bidirectional relationship between mucins and the gut microbiota and will also address the molecular mechanisms involved in key cell signalling pathways, such as inflammation, cell interactions, and cell differentiation, proliferation, and survival. Additionally, we highlight the potential use of mucins in the diagnosis, follow-up, and treatment of gastrointestinal diseases, such as chronic inflammatory diseases and cancer.


Asunto(s)
Microbioma Gastrointestinal , Mucinas , Tracto Gastrointestinal , Humanos , Inflamación , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
11.
ACS Appl Mater Interfaces ; 14(2): 2691-2702, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985252

RESUMEN

The use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO2 reduction reaction (CO2RR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuOx nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO2 electrolyzer and obtain peak CH4 partial current densities of -143 mA cm-2 (mass activity of 7.2 kA/g) with a Faradaic efficiency (FE) of 48% and multicarbon partial current densities of -231 mA cm-2 at 76% FE (FEC2H4 = 56%). Using atomic force microscopy, electron microscopy, and quasi in situ X-ray photoelectron spectroscopy, we trace back the divergence in hydrocarbon selectivity to differences in NP film morphology and rule out the influence of both the NP size (3-15 nm, >20 µg cm-2) and in situ oxidation state. We show that the combination of the O2 flow rate to the aggregation zone during NP growth and deposition time, which affect the NP production rate and mass loading, respectively, gives rise to the formation of either densely packed CuOx NPs or rough three-dimensional networks made from CuOx NP building blocks, which in turn affects the governing CO2RR mechanism. This study highlights the potential held by SGAS-generated NP films for future CO2RR catalyst layer optimization and upscaling, where the NPs' tunable properties, homogeneity, and the complete absence of organic capping agents may prove invaluable.

12.
ACS Appl Mater Interfaces ; 13(47): 56205-56216, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783238

RESUMEN

Cationic surfactants, mainly hexadecyl cetrimonium bromide (CTAB), are widely used in electrocatalysis to affect the selectivity of the reaction, specifically to inhibit the hydrogen evolution reaction (HER) in CO2 reduction (CO2R) systems. However, little research has been done on the modification of the functional groups present in such surfactants in order to promote this HER-inhibiting effect. In this work, the effectiveness of CTAB was promoted by substituting a methyl group of the quaternary amine for a benzyl group. This cationic surfactant, cetalkonium chloride (CKC), increased the hydrophobicity of the surface of the electrode, promoting the HER inhibition and the CO2R when HCO3- is used as a carbon source, which allows combining capture and conversion in one and the same medium, making it industrially highly attractive. By performing a detailed electrochemical characterization, we proved that the benzyl group formed an enhanced hydrophobic layer on the surface of the electrode in addition to the alkyl chain of the surfactant, showing higher effectiveness compared to CTAB. In fact, the Faradaic efficiency of the CO2R increased from 39 to 66% in saturated HCO3- electrolytes by using CKC instead of CTAB as the HER inhibitor. This opens up a wide range of avenues for research on the application of surfactants in the field of electrocatalysis, because, as proven, a selective modification of it can tune the selectivity of the reaction, adding a new variable in the design of an efficient carbon capture and utilization system.

13.
Ultramicroscopy ; 221: 113195, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348183

RESUMEN

Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as "contamination" in the field of electron microscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This efficient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand-induced contamination.

14.
ACS Nano ; 15(9): 14858-14872, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34428372

RESUMEN

Colloidal Cu-Ag nanocrystals measuring less than 10 nm across are promising candidates for integration in hybrid CO2 reduction reaction (CO2RR) interfaces, especially in the context of tandem catalysis and selective multicarbon (C2-C3) product formation. In this work, we vary the synthetic-ligand/copper molar ratio from 0.1 to 1.0 and the silver/copper atomic ratio from 0 to 0.7 and study the variations in the nanocrystals' size distribution, morphology and reactivity at rates of ≥100 mA cm-2 in a gas-fed recycle electrolyzer operating under neutral to mildly basic conditions (0.1-1.0 M KHCO3). High-resolution electron microscopy and spectroscopy are used in order to characterize the morphology of sub-10 nm Cu-Ag nanodimers and core-shells and to elucidate trends in Ag coverage and surface composition. It is shown that Cu-Ag nanocrystals can be densely dispersed onto a carbon black support without the need for immediate ligand removal or binder addition, which considerably facilitates their application. Although CO2RR product distribution remains an intricate function of time, (kinetic) overpotential and processing conditions, we nevertheless conclude that the ratio of oxygenates to hydrocarbons (which depends primarily on the initial dispersion of the nanocrystals and their composition) rises 3-fold at moderate Ag atom % relative to Cu NCs-based electrodes. Finally, the merits of this particular Cu-Ag/C system and the recycling reactor employed are utilized to obtain maximum C2-C3 partial current densities of 92-140 mA cm-2 at -1.15 VRHE and liquid product concentrations in excess of 0.05 wt % in 1 M KHCO3 after short electrolysis periods.

15.
Chemosphere ; 279: 130598, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33901895

RESUMEN

A first test of the field capabilities of a novel in situ sampling technique combining active and passive sampling (APS) was conducted in the sea. The proof-of-concept device uses a pump to draw water into a diffusion cell where dissolved target substances are accumulated onto sorbents which are selective for different classes of contaminants (i.e., metal cations, polar and non-polar organic compounds), simultaneously. A controlled laminar flow established in the diffusion cell enables measurements of contaminant concentrations that are fully independent from the hydrodynamic conditions in the bulk solution. APS measurements were consistent with those obtained using conventional passive sampling techniques such as organic diffusive gradients in thin films (o-DGT) and silicone rubber (SR) samplers (generally < 40% difference), taking into account the prevailing hydrodynamic conditions. The use of performance reference compounds (PRC) for hydrophobic contaminants provided additional information. Field measurements of metal ions in seawater showed large variability due to issues related to the device configuration. An improved field set-up deployed in supplementary freshwater mesocosm experiments provided metal speciation data that was consistent with passive sampling measurements (DGT), taking into account the hydrodynamic conditions. Overall, the results indicate that the APS technique provides a promising approach for the determination of a wide range of contaminants simultaneously, and independently from the hydrodynamic conditions in the bulk solution.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Difusión , Compuestos Orgánicos , Aguas Residuales/análisis , Agua , Contaminantes Químicos del Agua/análisis
16.
Ind Eng Chem Res ; 60(49): 17862-17880, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937989

RESUMEN

Direct electrochemical reduction of CO2 to C2 products such as ethylene is more efficient in alkaline media, but it suffers from parasitic loss of reactants due to (bi)carbonate formation. A two-step process where the CO2 is first electrochemically reduced to CO and subsequently converted to desired C2 products has the potential to overcome the limitations posed by direct CO2 electroreduction. In this study, we investigated the technical and economic feasibility of the direct and indirect CO2 conversion routes to C2 products. For the indirect route, CO2 to CO conversion in a high temperature solid oxide electrolysis cell (SOEC) or a low temperature electrolyzer has been considered. The product distribution, conversion, selectivities, current densities, and cell potentials are different for both CO2 conversion routes, which affects the downstream processing and the economics. A detailed process design and techno-economic analysis of both CO2 conversion pathways are presented, which includes CO2 capture, CO2 (and CO) conversion, CO2 (and CO) recycling, and product separation. Our economic analysis shows that both conversion routes are not profitable under the base case scenario, but the economics can be improved significantly by reducing the cell voltage, the capital cost of the electrolyzers, and the electricity price. For both routes, a cell voltage of 2.5 V, a capital cost of $10,000/m2, and an electricity price of <$20/MWh will yield a positive net present value and payback times of less than 15 years. Overall, the high temperature (SOEC-based) two-step conversion process has a greater potential for scale-up than the direct electrochemical conversion route. Strategies for integrating the electrochemical CO2/CO conversion process into the existing gas and oil infrastructure are outlined. Current barriers for industrialization of CO2 electrolyzers and possible solutions are discussed as well.

17.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448730

RESUMEN

BACKGROUNDSARS-CoV-2 infection induces mucin overexpression, further promoting disease. Given that mucins are critical components of innate immunity, unraveling their expression profiles that dictate the course of disease could greatly enhance our understanding and management of COVID-19.METHODSUsing validated RT-PCR assays, we assessed mucin mRNA expression in the blood of patients with symptomatic COVID-19 compared with symptomatic patients without COVID-19 and healthy controls and correlated the data with clinical outcome parameters. Additionally, we analyzed mucin expression in mucus and lung tissue from patients with COVID-19 and investigated the effect of drugs for COVID-19 treatment on SARS-CoV-2-induced mucin expression in pulmonary epithelial cells.RESULTSWe identified a dynamic blood mucin mRNA signature that clearly distinguished patients with symptomatic COVID-19 from patients without COVID-19 based on expression of MUC1, MUC2, MUC4, MUC6, MUC13, MUC16, and MUC20 (AUCROC of 91.8%; sensitivity and specificity of 90.6% and 93.3%, respectively) and that discriminated between mild and critical COVID-19 based on the expression of MUC16, MUC20, and MUC21 (AUCROC of 89.1%; sensitivity and specificity of 90.0% and 85.7%, respectively). Differences in the transcriptional landscape of mucins in critical cases compared with mild cases identified associations with COVID-19 symptoms, respiratory support, organ failure, secondary infections, and mortality. Furthermore, we identified different mucins in the mucus and lung tissue of critically ill COVID-19 patients and showed the ability of baricitinib, tocilizumab, favipiravir, and remdesivir to suppress expression of SARS-CoV-2-induced mucins.CONCLUSIONThis multifaceted blood mucin mRNA signature showed the potential role of mucin profiling in diagnosing, estimating severity, and guiding treatment options in patients with COVID-19.FUNDINGThe Antwerp University Research and the Research Foundation Flanders COVID-19 funds.


Asunto(s)
COVID-19/genética , Mucinas/genética , ARN Mensajero/genética , Adulto , Anciano , Antivirales/uso terapéutico , COVID-19/diagnóstico , COVID-19/patología , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Persona de Mediana Edad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , Transcriptoma/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
J Crohns Colitis ; 14(7): 974-994, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32003421

RESUMEN

BACKGROUND AND AIMS: There is evidence for a disturbed intestinal barrier function in inflammatory bowel diseases [IBD] but the underlying mechanisms are unclear. Because mucins represent the major components of the mucus barrier and disturbed mucin expression is reported in the colon of IBD patients, we studied the association between mucin expression, inflammation and intestinal permeability in experimental colitis. METHODS: We quantified 4-kDa FITC-dextran intestinal permeability and the expression of cytokines, mucins, junctional and polarity proteins at dedicated time points in the adoptive T cell transfer and dextran sodium sulfate [DSS]-induced colitis models. Mucin expression was also validated in biopsies from IBD patients. RESULTS: In both animal models, the course of colitis was associated with increased interleukin-1ß [IL-1ß] and tumour necrosis factor-α [TNF-α] expression and increased Muc1 and Muc13 expression. In the T cell transfer model, a gradually increasing Muc1 expression coincided with gradually increasing 4-kDa FITC-dextran intestinal permeability and correlated with enhanced IL-1ß expression. In the DSS model, Muc13 expression coincided with rapidly increased 4-kDa FITC-dextran intestinal permeability and correlated with TNF-α and Muc1 overexpression. Moreover, a significant association was observed between Muc1, Cldn1, Ocln, Par3 and aPKCζ expression in the T cell transfer model and between Muc13, Cldn1, Jam2, Tjp2, aPkcζ, Crb3 and Scrib expression in the DSS model. Additionally, MUC1 and MUC13 expression was upregulated in inflamed mucosa of IBD patients. CONCLUSIONS: Aberrantly expressed MUC1 and MUC13 might be involved in intestinal barrier dysfunction upon inflammation by affecting junctional and cell polarity proteins, indicating their potential as therapeutic targets in IBD.


Asunto(s)
Colitis Ulcerosa/fisiopatología , Colitis/fisiopatología , Enfermedad de Crohn/fisiopatología , Citocinas/metabolismo , Mucinas/genética , Mucinas/metabolismo , Actinas/metabolismo , Animales , Linfocitos T CD4-Positivos/trasplante , Moléculas de Adhesión Celular/genética , Colitis/inducido químicamente , Colitis/inmunología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Sulfato de Dextran , Dextranos/farmacocinética , Modelos Animales de Enfermedad , Femenino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/fisiopatología , Masculino , Ratones Endogámicos BALB C , Ratones SCID , Quinasa de Cadena Ligera de Miosina/genética , Permeabilidad , Peroxidasa/metabolismo , Proteínas de Uniones Estrechas/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Chemosphere ; 236: 124400, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545200

RESUMEN

Recently, a new sampling device combining active and passive sampling (APS) was developed for the measurement of time-averaged concentrations of metal species and both polar and non-polar organic contaminants in water. By coupling a diffusion cell (loaded with a set of sorbents selective for different substances) with a small pump and a flow meter, the APS device is able to perform in situ measurements that are independent of the hydrodynamic conditions in the exposure medium. In the present study, the diffusion layer thickness (δ) at the sorbent/solution interface within the diffusion cell was characterised under controlled flow conditions. Laboratory tests indicated that, in the range of flow rates investigated, the average diffusion layer thickness (δ¯) varied from ∼60 to ∼110 µm, depending on the type of substance measured and the position of the sorbent with respect to the flow direction. Due to its ability to maintain an approximately constant δ¯, good to excellent agreement was found between measurements performed with the APS device in non-complexing media and concentrations measured in discrete water samples for all the substances investigated. These results suggest that the APS device could overcome issues affecting the quantitative interpretation of measurements by conventional passive sampling devices and serve as a useful tool for simultaneously monitoring a wide range of contaminants in water.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Metales/análisis , Contaminantes Químicos del Agua/análisis , Difusión , Diseño de Equipo , Hidrodinámica , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/química
20.
Chemosphere ; 209: 363-372, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29935465

RESUMEN

Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA