Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Opt Express ; 31(23): 38400-38408, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017947

RESUMEN

An efficient supercontinuum (SC) generation featuring high spectral intensity across a large bandwidth requires high peak powers of several megawatts from pulsed lasers. Under these conditions and at multi-kilohertz (kHz) repetition rates, the SC generated in most materials is unstable due to thermal effects. In this work, we leverage the superior dispersion properties of water to maximize the spectral width of the SC, while avoiding stability issues due to thermal loading by means of a constant laminar flow of the liquid. This flow is controlled by a differential pressure scheme that allows to precisely adjust the fluid velocity to an optimum value for maximum stability of the SC. This approach is successfully implemented for repetition rates of 50 kHz and 100 kHz and two different pump wavelengths in the visible (VIS) and near infrared (NIR) spectral region with stability of the SC signal only limited by the driving pulses. The resulting water SC spans more than one octave covering the VIS to NIR range. Compared to established materials, such as yttrium aluminum garnet (YAG) and sapphire, the spectral bandwidth is increased by 60% and 40% respectively. Our scheme has the potential to be implemented with other liquids such as bromine or carbon disulfide (CS2), which promise even wider broadening and operation up to the mid-infrared.

2.
Opt Lett ; 48(17): 4496-4499, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656537

RESUMEN

This work presents a single-stage optical parametric amplifier (OPA) operating at degeneracy (DOPA) and pumped by the third harmonic of a Yb:KGW laser system. This DOPA exploits the broad amplification bandwidth that occurs with type-I phase-matching in ß-barium borate (BBO) when signal and idler overlap in the spectrum. The output pulses span from 590 to 780 nm (1.59-2.10 eV) with 7.75-fs duration after compression. Ultrashort pulses with similar bandwidths in this spectral window complement the existing array of optical parametric amplifiers that cover either the visible or the near-IR spectral regions with sub-10-fs pulses. This source of ultrashort optical pulses will enable the application of sophisticated spectroscopy techniques to the study of electronic coherences and energy migration pathways in biological, chemical, and condensed matter systems.

3.
Opt Lett ; 47(14): 3552-3555, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838728

RESUMEN

A single-cycle light source in the near infrared is demonstrated enabling sensitive applications of ultrafast optical field control of electronic transport. The compact Er:fiber system generates passively phase-locked pulses with broadband spectra covering 150 THz to 350 THz at a duration of 4.2 fs and 40 MHz repetition rate. A second output arm is equipped with an electro-optic modulator (EOM) that switches the arrival time of the pulses by 700 ps at arbitrary frequencies up to 20 MHz, enabling timing modulation of the pump pulse without changing the average intensity. As a benchmark demonstration, we investigate the carrier relaxation dynamics in low-temperature-grown InGaAs (LT-InGaAs) using quantum interference currents (QuICs).

4.
Phys Rev Lett ; 127(21): 217402, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860084

RESUMEN

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in nonmagnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by the hyperbolic dispersion via the coupling of metallic-induced electric and dielectric-induced magnetic dipolar optical modes with static magnetic fields. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range.

5.
Faraday Discuss ; 214: 147-157, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30834916

RESUMEN

The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the surfaces of the metal nanoparticles across the junction. Further evolution of the electron currents in the gap is governed by the locally enhanced electric fields. The combination of TDDFT and classical modelling of the electron trajectories allows us to study the quiver motion of the electrons in the gap region as a function of the Carrier Envelope Phase (CEP) of the incident pulse. In particular, we demonstrate the role of the quiver motion in establishing the CEP-sensitive net electric transport between nanoparticles.

6.
Opt Lett ; 42(14): 2687-2690, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708144

RESUMEN

We experimentally demonstrate tunable, phase-matched difference frequency generation covering the spectral region below 15 THz using 4H-SiC as a nonlinear crystal. This material combines a non-centrosymmetric lattice and strong birefringence with broadband transparency at low optical frequencies. Thorough refractive index measurements in the terahertz spectral range allow us to calculate phase-matching conditions for any near-infrared pump laser source. 4H-SiC is also exploited as a detector crystal for electro-optic sampling. The results allow us to estimate the effective second-order nonlinear coefficient.

7.
Opt Lett ; 41(2): 246-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26766685

RESUMEN

A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

8.
Opt Lett ; 41(16): 3731-4, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27519075

RESUMEN

A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.

9.
Phys Rev Lett ; 117(4): 047401, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27494498

RESUMEN

Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

10.
Nature ; 467(7314): 440-3, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20864998

RESUMEN

Ever since the conversion of the 11-cis retinal chromophore to its all-trans form in rhodopsin was identified as the primary photochemical event in vision, experimentalists and theoreticians have tried to unravel the molecular details of this process. The high quantum yield of 0.65 (ref. 2), the production of the primary ground-state rhodopsin photoproduct within a mere 200 fs (refs 3-7), and the storage of considerable energy in the first stable bathorhodopsin intermediate all suggest an unusually fast and efficient photoactivated one-way reaction. Rhodopsin's unique reactivity is generally attributed to a conical intersection between the potential energy surfaces of the ground and excited electronic states enabling the efficient and ultrafast conversion of photon energy into chemical energy. But obtaining direct experimental evidence for the involvement of a conical intersection is challenging: the energy gap between the electronic states of the reacting molecule changes significantly over an ultrashort timescale, which calls for observational methods that combine high temporal resolution with a broad spectral observation window. Here we show that ultrafast optical spectroscopy with sub-20-fs time resolution and spectral coverage from the visible to the near-infrared allows us to follow the dynamics leading to the conical intersection in rhodopsin isomerization. We track coherent wave-packet motion from the photoexcited Franck-Condon region to the photoproduct by monitoring the loss of reactant emission and the subsequent appearance of photoproduct absorption, and find excellent agreement between the experimental observations and molecular dynamics calculations that involve a true electronic state crossing. Taken together, these findings constitute the most compelling evidence to date for the existence and importance of conical intersections in visual photochemistry.


Asunto(s)
Procesos Fotoquímicos , Rodopsina/química , Rodopsina/metabolismo , Visión Ocular/fisiología , Animales , Bovinos , Electrones , Isomerismo , Cinética , Procesos Fotoquímicos/efectos de la radiación , Teoría Cuántica , Retinaldehído/química , Retinaldehído/metabolismo , Vibración , Visión Ocular/efectos de la radiación
11.
J Am Chem Soc ; 137(15): 5130-9, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25825939

RESUMEN

Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.


Asunto(s)
Estructura Molecular , Teoría Cuántica , Xantófilas/química
12.
Opt Lett ; 40(5): 823-6, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25723442

RESUMEN

A high-power femtosecond Yb:fiber amplifier operating with exceptional noise performance and long-term stability is demonstrated. It generates a 10-MHz train of 145-fs pulses at 1.03 µm with peak powers above 36 MW. The system features a relative amplitude noise of 1.5·10⁻6 Hz(-1/2) at 1 MHz and drifts of the 60-W average power below 0.3% over 72 hours of continuous operation. The passively phase-stable Er:fiber seed system provides ultrabroadband pulses that are synchronized at a repetition rate of 40 MHz. This combination aims at new schemes for sensitive experiments in ultrafast scientific applications.

13.
Chemistry ; 21(21): 7668-74, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25800965

RESUMEN

The hydrogen-evolving photocatalyst [(tbbpy)2 Ru(tpphz)Pd(Cl)2 ](2+) (tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2 Ru(tpphz)](2+) highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a (1) MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state.

14.
Proc Natl Acad Sci U S A ; 109(5): 1473-8, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307601

RESUMEN

Energy transfer (ET) between B850 and B875 molecules in light harvesting complexes LH2 and LH1/RC (reaction center) complexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-light conditions. In these bacteria, illumination intensity during growth strongly affects the type of LH2 complexes synthesized, their optical spectra, and their amount of energetic disorder. We used a specially built femtosecond spectrometer, combining tunable narrowband pump with broadband white-light probe pulses, together with an analytical method based on derivative spectroscopy for disentangling the congested transient absorption spectra of LH1 and LH2 complexes. This procedure allows real-time tracking of the forward (LH2 â†’ LH1) and backward (LH2←LH1) ET processes and unambiguous determination of the corresponding rate constants. In low-light grown samples, we measured lower ET rates in both directions with respect to high-light ones, which is explained by reduced spectral overlap between B850 and B875 due to partial redistribution of oscillator strength into a higher energetic exciton transition. We find that the low-light adaptation in R. palustris leads to a reduced elementary backward ET rate, in accordance with the low probability of two simultaneous excitations reaching the same LH1/RC complex under weak illumination. Our study suggests that backward ET is not just an inevitable consequence of vectorial ET with small energetic offsets, but is in fact actively managed by photosynthetic bacteria.


Asunto(s)
Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Fotosíntesis
15.
Opt Express ; 22(8): 9063-72, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24787794

RESUMEN

We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 µm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

16.
Angew Chem Int Ed Engl ; 53(9): 2504-7, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24481600

RESUMEN

Isorhodopsin is the visual pigment analogue of rhodopsin. It shares the same opsin environment but it embeds 9-cis retinal instead of 11-cis. Its photoisomerization is three times slower and less effective. The mechanistic rationale behind this observation is revealed by combining high-level quantum-mechanical/molecular-mechanical simulations with ultrafast optical spectroscopy with sub-20 fs time resolution and spectral coverage extended to the near-infrared. Whereas in rhodopsin the photoexcited wavepacket has ballistic motion through a single conical intersection seam region between the ground and excited states, in isorhodopsin it branches into two competitive deactivation pathways involving distinct conical intersection funnels. One is rapidly accessed but unreactive. The other is slower, as it features extended steric interactions with the environment, but it is productive as it follows forward bicycle pedal motion.


Asunto(s)
Rodopsina/química , Diterpenos , Isomerismo , Modelos Moleculares , Procesos Fotoquímicos , Teoría Cuántica , Retinaldehído/química , Análisis Espectral
17.
J Am Chem Soc ; 135(34): 12747-54, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23883167

RESUMEN

Singlet exciton fission is a spin-allowed process to generate two triplet excitons from a single absorbed photon. This phenomenon offers great potential in organic photovoltaics, but the mechanism remains poorly understood. Most reports to date have addressed intermolecular fission within small-molecular crystals. However, through appropriate chemical design chromophores capable of intramolecular fission can also be produced. Here we directly observe sub-100 fs activated singlet fission in a semiconducting poly(thienylenevinylene). We demonstrate that fission proceeds directly from the initial 1Bu exciton, contrary to current models that involve the lower-lying 2Ag exciton. In solution, the generated triplet pairs rapidly recombine and decay through the 2Ag state. In films, exciton diffusion breaks this symmetry and we observe long-lived triplets which form charge-transfer states in photovoltaic blends.

18.
Chemphyschem ; 14(13): 2973-83, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23839954

RESUMEN

Correlations between structural features and photophysical properties offer the possibility to design dyes with tailor-made properties. In this respect, the photophysical properties of a series of 4H-imidazole (4H-im) ruthenium dyes with varying chemical and electronic structures of the complex fragments [(tpy)Ru(4H-im)X] {tpy=4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine; X=Cl(-), NCS(-)} and [(bpy)2Ru(4H-im)](+) {bpy=4,4'-di-tert-butyl-2,2'-bipyridine} were investigated. Variation of the π-donor/acceptor properties of the ancillary ligands offers the possibility to tune the relative energies of the d donor and π* acceptor orbitals of 4H-im, which results in a shift in the Ru→4H-im (1)MLCT (MLCT=metal-to-ligand charge transfer) absorption band in the visible range. Further, the energies of the excited states and also the interactions and mixing of the metal d orbital with the π* 4H-im orbital are sensitive to the chemical and electronic structures of the complex fragment. This causes subtle changes in the photoinduced processes; for example, the rate of the interim population of a planarized state increases with increasing/decreasing π-acceptor/donor character of the ancillary ligand. Although ground-state repopulation in the tpy species follows the energy-gap law, local symmetry-related effects have to be considered to account for the very short lifetime of the excitation in the bpy complex. Additionally, the ultrafast intramolecular relaxation processes leading from the initially excited states to the relaxed triplet states localized on the 4H-im ligand (internal conversion, internal vibrational energy redistribution, intersystem crossing) depend on the nature of the complex fragment. The high excitation-wavelength-dependent rate for the population of the relaxed triplet states in the bpy complex points to additional interligand electron-transfer contributions upon excitation into the higher lying Ru→bpy (1)MLCT states.

19.
Nano Lett ; 12(6): 2941-7, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22551099

RESUMEN

Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging.


Asunto(s)
Oro/química , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Ensayo de Materiales , Tamaño de la Partícula , Fotones
20.
Nat Commun ; 14(1): 3875, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414750

RESUMEN

Molecular polaritons are hybrid light-matter states that emerge when a molecular transition strongly interacts with photons in a resonator. At optical frequencies, this interaction unlocks a way to explore and control new chemical phenomena at the nanoscale. Achieving such control at ultrafast timescales, however, is an outstanding challenge, as it requires a deep understanding of the dynamics of the collectively coupled molecular excitation and the light modes. Here, we investigate the dynamics of collective polariton states, realized by coupling molecular photoswitches to optically anisotropic plasmonic nanoantennas. Pump-probe experiments reveal an ultrafast collapse of polaritons to pure molecular transition triggered by femtosecond-pulse excitation at room temperature. Through a synergistic combination of experiments and quantum mechanical modelling, we show that the response of the system is governed by intramolecular dynamics, occurring one order of magnitude faster with respect to the uncoupled excited molecule relaxation to the ground state.


Asunto(s)
Fotones , Registros , Anisotropía , Frecuencia Cardíaca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA