Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mar Pollut Bull ; 198: 115810, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006872

RESUMEN

Plastic pollution causes detrimental environmental impacts, which are increasingly attributed to chemical additives. However, the behaviour of plastic additives in the marine environment is poorly understood. We used a marine deployment experiment to examine the impact of weathering on the extractables profile, analysed by liquid chromatography-mass spectrometry, of four plastics at two locations over nine months in Aotearoa/New Zealand. The concentration of additives in polyethylene and oxo-degradable polyethylene were strongly influenced by artificial weathering, with deployment location and time less influential. By comparison, polyamide 6 and polyethylene terephthalate were comparatively inert with minimal change in response to artificial weathering or deployment time. Non-target analysis revealed extensive differentiation between non-aged and aged polyethylene after deployment, concordant with the targeted analysis. These observations highlight the need to consider the impact of leaching and weathering on plastic composition when quantifying the potential impact and risk of plastic pollution within receiving environments.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Polietileno/análisis , Tereftalatos Polietilenos , Contaminación Ambiental/análisis , Tiempo (Meteorología) , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 917: 170301, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272094

RESUMEN

The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.

3.
J Hazard Mater ; 459: 132303, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37595471

RESUMEN

The release of additives from microplastics is known to harm organisms. In the environment, microplastics are exposed to weathering processes which are suspected to influence additive leaching kinetics, the extent and mechanism of which remain poorly understood. We examined the impact of weathering on stabiliser additive leaching kinetics using environmentally relevant accelerated weathering and leaching procedures. Nine binary polymer-additive formulations were specifically prepared, weathered, analysed, and evaluated for their leaching characteristics. Cumulative additive release (Ce) varied widely between formulations, ranging from 0.009 to 1162 µg/g. Values of Ce generally increased by polymer type in the order polyethylene terephthalate < polyamide 6 < polyethylene. The change in leaching kinetics after accelerated weathering was incongruous across the nine formulations, with a significant change in Ce only observed for three out of nine formulations. Physicochemical characterisation of the microplastics demonstrated that additive blooming was the primary mechanism influencing the leaching response to weathering. These findings highlight the dependency of additive fate on the polymer type, additive chemistry, and the extent of weathering exposure. This has significant implications for risk assessment and mitigation, where the general assumption that polymer weathering increases additive leaching may be too simplistic.

4.
Mar Pollut Bull ; 186: 114451, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529018

RESUMEN

Plastic pollution research on a global scale intensified considerably in the current decade; however, research efforts in the South Pacific are still lagging. Here, we report on microplastic contamination of intertidal and subtidal sediments in the Vava'u archipelago, Tonga. While providing the first baseline data of its type in Tonga, the study also advances methods and adjusts them for low-budget research. The methods were based on density separation of microplastics from the sediment using CaCl2, a high-density salt which due to its high solubility, low cost and availability. Once separated, microplastics were quantified by microscopic analysis and polymers characterized via FTIR spectroscopy. Microplastics in intertidal and subtidal sediments were found in concentrations of 23.5 ± 1.9 and 15.0 ± 1.9 particles L-1 of sediment, respectively. The dominant type of microplastics in both intertidal (85 %) and subtidal sediments (62 %) were fibres.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Tonga , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química
5.
MethodsX ; 10: 102221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255577

RESUMEN

Microplastics and plastic additives are contaminants of emerging environmental concern. Static leaching methods are commonly applied to assess the rate and extent of additive release from microplastics. However, this approach may not be representative of environmental conditions where near infinite dilution or percolation commonly occur. We evaluated three different approaches for assessing additive leaching under environmentally relevant sink conditions, culminating in the refinement and validation of DyLeMMA (Dynamic Leaching Method for Microplastic Assessment). Analysis was performed using a high-resolution liquid chromatography-mass spectrometry method enabling targeted quantification of additives and screening for non-intentionally added substances. Using four different plastics, sink conditions were maintained over the duration of the test, thereby avoiding solubility limited release and ensuring environmental relevance. Background contamination from ubiquitous additive chemicals was minimised, thereby providing good sensitivity and specificity. Resulting data, in the form of additive release curves, should prove suitable for fitting to release models and derivation of parameters describing additive leaching from microplastics.Key attributes of DyLeMMA:•Environmentally relevant dynamic leaching method for microplastics, demonstrated to maintain sink conditions over the test duration,•Simple, fast, and cost-effective approach without complication of using a solid phase sink,•Provide data suitable for understanding microplastic leaching kinetics and mechanisms.

6.
Mar Pollut Bull ; 185(Pt A): 114243, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36330932

RESUMEN

Marine plastic pollution, particularly microplastics, has been recognised as a global issue in the recent years, but research efforts in the Pacific are lagging. We carried out research on microplastics contamination of surface waters of the Vava'u archipelago, Tonga. Since microplastics smaller than the standard mesh size (333-335 µm) are readily reported in the literature on microplastics, we used a finer plankton net (100 µm) to determine the proportion of captured microplastics smaller than 300 µm. Isolated microplastics were counted and measured using stereomicroscope with polymer identification performed by FTIR spectroscopy. The analysis revealed high microplastics concentrations (329,299.7 ± 40,994.2 pcs km-2 or 1.05 ± 0.13 pcs m-3). The proportion of particles smaller than 300 µm was 40 %. The predominant type of microplastics in surface waters were small bits of white film, which we associated with cement-filled white bags used to construct docks throughout Vava'u, often heavily eroded.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Tonga , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
7.
3D Print Addit Manuf ; 8(3): 193-200, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654660

RESUMEN

A biobased composite material with heat-triggered shape memory ability was successfully formulated for three-dimensional (3D) printing. It was produced from cellulose nanocrystals and cellulose micro-powder particles within a bioderived thermally cured polyester matrix based on glycerol, citric acid, and sebacic acid. The effect of curing duration on the material's shape memory behavior was quantified by using two thermo-mechanical approaches to measure recovery: (1) displacement in three-point bending and (2) angular recovery from a beam bent at 90° in a single cantilever setup. Extending curing duration increased the material's glass-transition temperature from -26°C after 6 h to 13°C after 72 h of curing. Fourier-transform infrared spectroscopy confirmed the associated progressive conversion of functional groups consistent with polyester formation. Slow recovery rates and low levels of shape recovery (22-70%) were found for samples cured less than 24 h. Those results also indicated a high dependence on the measurement approach. In contrast, samples cured for 48 and 72 h exhibited faster recovery rates, a significantly higher recovery percentage (90-100%) and were less sensitive to the measurement approach. Results demonstrated that once a sufficient curing threshold was achieved, additional curing time could be used to tune the material glass-transition temperature and create heat-triggered 3D-printed products.

8.
J Hazard Mater ; 414: 125571, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030416

RESUMEN

Plastic pollution is prevalent worldwide and has been highlighted as an issue of global concern due to its harmful impacts on wildlife. The extent and mechanism by which plastic pollution effects organisms is poorly understood, especially for microplastics. One proposed mechanism by which plastics may exert a harmful effect is through the leaching of additives. To determine the risk to wildlife, the chemical identity and exposure to additives must be established. However, there are few reports with disparate experimental approaches. In contrast, a breadth of knowledge on additive release from plastics is held within the food, pharmaceutical and medical, construction, and waste management industries. This includes standardised methods to perform migration, extraction, and leaching studies. This review provides an overview of the approaches and methods used to characterise additives and their leaching behaviour from plastic pollution. The limitations of these methods are highlighted and compared with industry standardised approaches. Furthermore, an overview of the analytical strategies for the identification and quantification of additives is presented. This work provides a basis for refining current leaching approaches and analytical methods with a view towards understanding the risk of plastic pollution.

9.
Mar Pollut Bull ; 151: 110867, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056647

RESUMEN

We report the first large-scale investigation of microplastic contamination in beach sediments across Auckland, New Zealand's most populous region. Sediment samples were taken from the high tide and intertidal zones at 39 sites across estuary, harbour and ocean environments of the East and West Coasts. Microplastic contamination was present at the majority of beaches studied with a mean abundance of 459 particles.m-2 ranging from 0 to 2615 particles.m-2. High variability was observed between the sites, indicating the importance of small-scale factors on microplastic contamination. Samples from high and intertidal zones showed no significant difference in microplastic contamination (p = 0.225). The West Coast beaches exhibited higher microplastic contamination compared with East Coast beaches (p = 0.004). Microplastics were predominately fibres (88%), with lower proportions of fragments (8%) and films (4%). The majority of the microplastics analysed were regenerated cellulose (34%), polyethylene terephthalate (22%) and polyethylene (15%).


Asunto(s)
Monitoreo del Ambiente , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Nueva Zelanda , Plásticos
10.
Mar Pollut Bull ; 136: 547-564, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30509840

RESUMEN

Fish are an important food source for South Pacific (SP) island countries, yet there is little information on contamination of commercial marine fish species by plastic. The aim of our study was to perform a broad-scale assessment of plastic ingestion by fish common in the diet of SP inhabitants. We examined 932 specimens from 34 commercial fish species across four SP locations, and some of the prey they ingested, for the presence of marine plastics. Plastic was found in 33 species, with an average ingestion rate (IR) of 24.3 ±â€¯1.4% and plastic load of 2.4 ±â€¯0.2 particles per fish. Rapa Nui fish exhibited the greatest IR (50.0%), significantly greater than in other three locations. Rapa Nui is located within the SP subtropical gyre, where the concentration of marine plastics is high and food is limited. Plastic was also found in prey, which confirms the trophic transfer of microplastics.


Asunto(s)
Peces , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ingestión de Alimentos , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Cadena Alimentaria , Contenido Digestivo/química , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA