Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Glob Chang Biol ; 29(19): 5482-5508, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37466251

RESUMEN

Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change.


Asunto(s)
Ecosistema , Ríos , Humanos , Agua Dulce , Frío , Cambio Climático , Agua
2.
Water Resour Res ; 58(6): 1-18, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35813986

RESUMEN

We present and demonstrate a recursive-estimation framework to infer groundwater/surface-water exchange based on temperature time series collected at different vertical depths below the sediment/water interface. We formulate the heat-transport problem as a state-space model (SSM), in which the spatial derivatives in the convection/conduction equation are approximated using finite differences. The SSM is calibrated to estimate time-varying specific discharge using the Extended Kalman Filter (EKF) and Extended Rauch-Tung-Striebel Smoother (ERTSS). Whereas the EKF is suited to real-time ("online") applications and uses only the past and current measurements for estimation (filtering), the ERTSS is intended for near-real time or batch-processing ("offline") applications and uses a window of data for batch estimation (smoothing). The two algorithms are demonstrated with synthetic and field-experimental data and are shown to be efficient and rapid for the estimation of time-varying flux over seasonal periods; further, the recursive approaches are effective in the presence of rapidly changing flux and (or) nonperiodic thermal boundary conditions, both of which are problematic for existing approaches to heat tracing of time-varying groundwater/surface-water exchange.

3.
J Environ Manage ; 220: 233-245, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29783177

RESUMEN

Identifying and quantifying groundwater exchange is critical when considering contaminant fate and transport at the groundwater/surface-water interface. In this paper, areally distributed temperature and point seepage measurements are used to efficiently assess spatial and temporal groundwater discharge patterns through a glacial-kettle lakebed area containing a zero-valent iron permeable reactive barrier (PRB). Concern was that the PRB was becoming less permeable with time owing to biogeochemical processes within the PRB. Patterns of groundwater discharge over an 8-year period were examined using fiber-optic distributed temperature sensing (FO-DTS) and snapshot-in-time point measurements of temperature. The resulting thermal maps show complex and uneven distributions of temperatures across the lakebed and highlight zones of rapid seepage near the shoreline and along the outer boundaries of the PRB. Repeated thermal mapping indicates an increase in lakebed temperatures over time at periods of similar stage and surface-water temperature. Flux rates in six seepage meters permanently installed on the lakebed in the PRB area decreased on average by 0.021 md-1 (or about 4.5 percent) annually between 2004 and 2015. Modeling of diurnal temperature signals from shallow vertical profiles yielded mean flux values ranging from 0.39 to 1.15 md-1, with stronger fluxes generally related to colder lakebed temperatures. The combination of an increase in lakebed temperatures, declines in direct seepage, and observations of increased cementation of the lakebed surface provide in situ evidence that the permeability of the PRB is declining. The presence of temporally persistent rapid seepage zones is also discussed.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Hierro , Lagos , Movimientos del Agua
4.
Environ Sci Technol ; 47(20): 11423-31, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24015908

RESUMEN

Groundwater discharge locations along the upper Delaware River, both discrete bank seeps and diffuse streambed upwelling, may create thermal niche environments that benefit the endangered dwarf wedgemussel (Alasmidonta heterodon). We seek to identify whether discrete or diffuse groundwater inflow is the dominant control on refugia. Numerous springs and seeps were identified at all locations where dwarf wedgemussels still can be found. Infrared imagery and custom high spatial resolution fiber-optic distributed temperature sensors reveal complex thermal dynamics at one of the seeps with a relatively stable, cold groundwater plume extending along the streambed/water-column interface during midsummer. This plume, primarily fed by a discrete bank seep, was shown through analytical and numerical heat-transport modeling to dominate temperature dynamics in the region of potential habitation by the adult dwarf wedgemussel.


Asunto(s)
Bivalvos/fisiología , Especies en Peligro de Extinción , Ríos , Temperatura , Agua , Animales , Delaware , Ecosistema , Geografía , Agua Subterránea , Pennsylvania , Factores de Tiempo
5.
Ground Water ; 60(6): 784-791, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35293621

RESUMEN

Groundwater/surface-water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g., inference of GW/SW exchange, mapping of bed materials, etc.), but the application of these methods is constrained by site conditions such as water depth, specific conductance, bed material, and other factors. Researchers and environmental professionals working on GW/SW problems come from diverse fields and rarely have expertise in all available field methods; hence there is a need for guidance to design field campaigns and select methods that both contribute to study goals and are likely to work under site-specific conditions. Here, we present the spreadsheet-based GW/SW-Method Selection Tool (GW/SW-MST) to help practitioners identify methods for use in GW/SW and hyporheic studies. The GW/SW-MST is a Microsoft Excel-based decision support tool in which the user selects answers to questions about GW/SW-related study goals and site parameters and characteristics. Based on user input, the tool indicates which methods from a toolbox of 32 methods could potentially contribute to achieving the specified goals at the site described.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agua , Contaminantes Químicos del Agua/análisis , Contaminación del Agua
6.
Nat Commun ; 12(1): 1450, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664258

RESUMEN

Groundwater discharge generates streamflow and influences stream thermal regimes. However, the water quality and thermal buffering capacity of groundwater depends on the aquifer source-depth. Here, we pair multi-year air and stream temperature signals to categorize 1729 sites across the continental United States as having major dam influence, shallow or deep groundwater signatures, or lack of pronounced groundwater (atmospheric) signatures. Approximately 40% of non-dam stream sites have substantial groundwater contributions as indicated by characteristic paired air and stream temperature signal metrics. Streams with shallow groundwater signatures account for half of all groundwater signature sites and show reduced baseflow and a higher proportion of warming trends compared to sites with deep groundwater signatures. These findings align with theory that shallow groundwater is more vulnerable to temperature increase and depletion. Streams with atmospheric signatures tend to drain watersheds with low slope and greater human disturbance, indicating reduced stream-groundwater connectivity in populated valley settings.

7.
Sci Total Environ ; 755(Pt 1): 142873, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33348482

RESUMEN

Groundwater discharge zones in streams are important habitats for aquatic organisms. The use of discharge zones for thermal refuge and spawning by fish and other biota renders them susceptible to potential focused discharge of groundwater contamination. Currently, there is a paucity of information about discharge zones as a potential exposure pathway of chemicals to stream ecosystems. Using thermal mapping technologies to locate groundwater discharges, shallow groundwater and surface water from three rivers in the Chesapeake Bay Watershed, USA were analyzed for phytoestrogens, pesticides and their degradates, steroid hormones, sterols and bisphenol A. A Bayesian censored regression model was used to compare groundwater and surface water chemical concentrations. The most frequently detected chemicals in both ground and surface water were the phytoestrogens genistein (79%) and formononetin (55%), the herbicides metolachlor (50%) and atrazine (74%), and the sterol cholesterol (88%). There was evidence suggesting groundwater discharge zones could be a unique exposure pathway of chemicals to surface water systems, in our case, metolachlor sulfonic acid (posterior mean concentration = 150 ng/L in groundwater and 4.6 ng/L in surface water). Our study also demonstrated heterogeneity of chemical concentration in groundwater discharge zones within a stream for the phytoestrogen formononetin, the herbicides metolachlor and atrazine, and cholesterol. Results support the hypothesis that discharge zones are an important source of exposure of phytoestrogens and herbicides to aquatic organisms. To manage critical resources within the Chesapeake Bay Watershed, more work is needed to characterize exposure in discharge zones more broadly across time and space.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Animales , Teorema de Bayes , Ecosistema , Monitoreo del Ambiente , Fitoestrógenos , Ríos , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 756: 143838, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33261872

RESUMEN

Freshwater lenses underlying small ocean islands exhibit spatial variability and temporal fluctuations in volume, influencing ecologic management. For example, The Palmyra Atoll National Wildlife Refuge harbors one of the few surviving native stands of Pisonia grandis in the central Pacific Ocean, yet these trees face pressure from groundwater salinization, with little basic groundwater data to guide decision making. Adding to natural complexity, the geology of Palmyra was heavily altered by dredge and fill activities. Our study based at this atoll combines geophysical and hydrological field measurements from 2008 to 2019 with groundwater modeling to study the drivers of observed freshwater lens dynamics. Electromagnetic induction (EMI) field data were collected on the main atoll islands over repeat transects in 2008 following 'strong' La Niña conditions (wet) and in 2016 during 'very strong' El Niño conditions (dry). Shallow monitoring wells were installed adjacent to the geophysical transects in 2013 and screened within the fresh/saline groundwater transition zone. Temporal EMI and monitoring well data showed a strong contraction of the freshwater lens in response to El Niño conditions, and indicated a thicker lens toward the ocean side, an opposite spatial pattern to that observed for many other Pacific islands. On an outer islet where a stand of mature Pisonia trees exist, EMI surveys revealed only a thin (<3 m from land surface) layer of brackish groundwater during El Niño. Numerical groundwater simulations were performed for a range of permeability distributions and climate conditions at Palmyra. Results revealed that the observed atypical lens asymmetry is likely due to more efficient submarine groundwater discharge on the lagoon side as a result of lagoon dredging and filling with high-permeability material. Simulations also predict large decreases (40%) in freshwater lens volume during dry cycles and highlight threats to the Pisonia trees, yielding insight for atoll ecosystem management worldwide.


Asunto(s)
Ecosistema , Agua Subterránea , Geología , Humanos , Islas , Islas del Pacífico , Océano Pacífico
9.
Ground Water ; 58(5): 799-804, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31840251

RESUMEN

Fiber-optic distributed temperature sensing (FO-DTS) has proven to be a transformative technology for the hydrologic sciences, with application to diverse problems including hyporheic exchange, groundwater/surface-water interaction, fractured-rock characterization, and cold regions hydrology. FO-DTS produces large, complex, and information-rich datasets. Despite the potential of FO-DTS, adoption of the technology has been impeded by lack of tools for data processing, analysis, and visualization. New tools are needed to efficiently and fully capitalize on the information content of FO-DTS datasets. To this end, we present DTSGUI, a public-domain Python-based software package for editing, parsing, processing, statistical analysis, georeferencing, and visualization of FO-DTS data.


Asunto(s)
Agua Subterránea , Temperatura , Agua , Movimientos del Agua
10.
Sci Total Environ ; 740: 140074, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32927542

RESUMEN

The hydrogeology below large surface water features such as rivers and estuaries is universally under-informed at the long reach to basin scales (tens of km+). This challenge inhibits the accurate modeling of fresh/saline groundwater interfaces and groundwater/surface water exchange patterns at management-relevant spatial extents. Here we introduce a towed, floating transient electromagnetic (TEM) system (i.e. FloaTEM) for rapid (up to 15 km/h) high resolution electrical mapping of the subsurface below large water bodies to depths often a factor of 10 greater than other towed instruments. The novel FloaTEM system is demonstrated at a range of diverse 4th through 6th-order riverine settings across the United States including 1) the Farmington River, near Hartford, Connecticut; 2) the Upper Delaware River near Barryville, New York; 3) the Tallahatchie River near Shellmound, Mississippi; and, 4) the Eel River estuary, on Cape Cod, near Falmouth, Massachusetts. Airborne frequency-domain electromagnetic and land-based towed TEM data are also compared at the Tallahatchie River site, and streambed geologic scenarios are explored with forward modeling. A range of geologic structures and pore water salinity interfaces were identified. Process-based interpretation of the case study data indicated FloaTEM can resolve varied sediment-water interface materials, such as the accumulation of fines at the bottom of a reservoir and permeable sand/gravel riverbed sediments that focus groundwater discharge. Bedrock layers were mapped at several sites, and aquifer confining units were defined at comparable resolution to airborne methods. Terrestrial fresh groundwater discharge with flowpaths extending hundreds of meters from shore was also imaged below the Eel River estuary, improving on previous hydrogeological characterizations of that nutrient-rich coastal exchange zone. In summary, the novel FloaTEM system fills a critical gap in our ability to characterize the hydrogeology below surface water features and will support more accurate prediction of groundwater/surface water exchange dynamics and fresh-saline groundwater interfaces.

11.
Ground Water ; 57(5): 737-748, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30737787

RESUMEN

Quantitative evaluation of groundwater/surface water exchange dynamics is universally challenging in large river systems, because existing methodology often does not yield spatially-distributed data and is difficult to apply in deeper water. Here we apply a combined near-surface geophysical and direct groundwater chemical toolkit to refine fresh groundwater discharge estimates to the Colorado River through a 4-km2 wetland that borders the town of Moab, Utah, USA. Preliminary characterization of raw electromagnetic imaging (EMI) data, collected by kayak and by walking, was used to guide additional direct-contact electrical measurements and installation of new monitoring wells. Chemical data from the wells strongly supported the EMI spatial characterization of preferential fresh groundwater discharge embedded in natural brine groundwaters and weighted to the southern wetland section. Inversion of the EMI data revealed sub-meter scale detail regarding bulk electrical conductivity zonation across approximately 15.5 km of transects, collected in only 3 days. This electrical detail indicates processes such as salinization of the unsaturated zone and direct discharge through the Colorado River sediments and a tributary creek bed. Overall, the study contributed to a substantial reduction in fresh groundwater discharge estimates previously made using sparse existing well data and a simplified assumption of diffuse fresh groundwater discharge below the entire wetland. EMI will likely become a widely used tool in systems with natural electrical contrast as groundwater/surface water hydrogeologists continue to recognize the prevalence of preferential groundwater discharge processes.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Colorado , Ríos , Utah , Humedales
12.
Sci Total Environ ; 685: 357-369, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176222

RESUMEN

River to floodplain hydrologic connectivity is strongly enhanced by beaver- (Castor canadensis) engineered channel water diversions. The hydroecological impacts are wide ranging and generally positive, however, the hydrogeochemical characteristics of beaver-induced flowpaths have not been thoroughly examined. Using a suite of complementary ground- and drone-based heat tracing and remote sensing methodology we characterized the physical template of beaver-induced floodplain exchange for two alluvial mountain streams near Crested Butte, Colorado, USA. A flowpath-oriented perspective to water quality sampling allowed characterization of the chemical evolution of channel water diverted through floodplain beaver ponds and ultimately back to the channel in 'beaver pond return flows'. Subsurface return flow seepages were universally suboxic, while ponds and surface return flows showed a range of oxygen concentration due to in-situ photosynthesis and atmospheric mixing. Median concentrations of reduced metals: manganese (Mn), iron (Fe), aluminum (Al), and arsenic (As) were substantially higher along beaver-induced flowpaths than in geologically controlled seepages and upstream main channel locations. The areal footprint of reduced return seepage flowpaths were imaged with surface electromagnetic methods, indicating extensive zones of high-conductivity shallow groundwater flowing back toward the main channels and emerging at relatively warm bank seepage zones observed with infrared. Multiple-depth redox dynamics within one focused seepage zone showed coupled variation over time, likely driven by observed changes in seepage rate that may be controlled by pond stage. High-resolution times series of dissolved Mn and Fe collected downstream of the beaver-impacted reaches demonstrated seasonal dynamics in mixed river metal concentrations. Al time series concentrations showed proportional change to Fe at the smaller stream location, indicating chemically reduced flowpaths were sourcing Al to the channel. Overall our results indicated beaver-induced floodplain exchanges create important, and perhaps dominant, transport pathways for floodplain metals by expanding chemically-reduced zones paired with strong advective exchange.

13.
Hydrol Earth Syst Sci ; 22(12): 6383-6398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31097898

RESUMEN

Brook trout (Salvelinus fontinalis) spawn in fall and overwintering egg development can benefit from stable, relatively warm temperatures in groundwater-seepage zones. However, eggs are also sensitive to dissolved oxygen concentration, which may be reduced in discharging groundwater (i.e., seepage). We investigated a 2 km reach of the coastal Quashnet River in Cape Cod, Massachusetts, USA, to relate preferred fish spawning habitats to geology, geomorphology, and discharging groundwater geochemistry. Thermal reconnaissance methods were used to locate zones of rapid groundwater discharge, which were predominantly found along the central channel of a wider stream valley section. Pore-water chemistry and temporal vertical groundwater flux were measured at a subset of these zones during field campaigns over several seasons. Seepage zones in open-valley sub-reaches generally showed suboxic conditions and higher dissolved solutes compared to the underlying glacial outwash aquifer. These discharge zones were cross-referenced with preferred brook trout redds and evaluated during 10 years of observation, all of which were associated with discrete alcove features in steep cutbanks, where stream meander bends intersect the glacial valley walls. Seepage in these repeat spawning zones was generally stronger and more variable than in open-valley sites, with higher dissolved oxygen and reduced solute concentrations. The combined evidence indicates that regional groundwater discharge along the broader valley bottom is predominantly suboxic due to the influence of near-stream organic deposits; trout show no obvious preference for these zones when spawning. However, the meander bends that cut into sandy deposits near the valley walls generate strong oxic seepage zones that are utilized routinely for redd construction and the overwintering of trout eggs. Stable water isotopic data support the conclusion that repeat spawning zones are located directly on preferential discharges of more localized groundwater. In similar coastal systems with extensive valley peat deposits, the specific use of groundwater-discharge points by brook trout may be limited to morphologies such as cutbanks, where groundwater flow paths do not encounter substantial buried organic material and remain oxygen-rich.

14.
Sci Total Environ ; 636: 1117-1127, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29913574

RESUMEN

Streams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems. Additionally, discharge from shallow groundwater flowpaths can theoretically transfer lagged annual temperature signals from aquifer to stream water. Here we explore this concept using multi-year temperature records from 120 stream sites located across 18 mountain watersheds of Shenandoah National Park, VA, USA and a coastal watershed in Massachusetts, USA. Both areas constitute important cold-water habitat for native brook trout (Salvelinus fontinalis). Observed annual temperature signals indicate a dominance of shallow groundwater discharge to streams in the National Park, in contrast to the coastal watershed that has strong, apparently deeper, groundwater influence. The average phase lag from air to stream signals in Shenandoah National Park is 11 d; however, extended lags of approximately 1 month were observed in a subset of streams. In contrast, the coastal stream has pronounced attenuation of annual temperature signals without notable phase lag. To better understand these observed differences in signal characteristics, analytical and numerical models are used to quantify mixing of the annual temperature signals of surface and groundwater. Simulations using a total heat budget numerical model indicate groundwater-induced annual temperature signal phase lags are likely to show greater downstream propagation than the related signal amplitude attenuation. The measurement of multi-seasonal paired air and water temperatures offers great promise toward understanding catchment processes and informing current cold-water habitat management at ecologically-relevant scales.

15.
Hydrol Process ; 31(14): 2648-2661, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30505070

RESUMEN

Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction-dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson (2004), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater-surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux-LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi-decadal surface signals have disturbed subsurface thermal regimes.

16.
Ground Water ; 55(1): 10-26, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696430

RESUMEN

Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.


Asunto(s)
Agua Subterránea , Calor , Reproducibilidad de los Resultados , Temperatura , Agua
17.
Ground Water ; 54(3): 434-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26372016

RESUMEN

A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.


Asunto(s)
Agua Subterránea , Movimientos del Agua , Modelos Teóricos , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA