Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893862

RESUMEN

The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole-genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here, we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulfur metabolism, detoxification, antioxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establish that the trophosome is a multifunctional organ marked by intracellular digestion of endosymbionts, storage of excretory products, and hematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbor highly expressed genes involved with cell cycle, programed cell death, and immunity indicating a high cell turnover and defense mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whereas it simultaneously provides new insights into the development, whole organism functions, and evolution in the giant tubeworm.


Asunto(s)
Gammaproteobacteria , Poliquetos , Aclimatación , Animales , Gammaproteobacteria/genética , Poliquetos/genética , Poliquetos/metabolismo , Simbiosis/genética
2.
Proc Biol Sci ; 286(1896): 20181281, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30887877

RESUMEN

Horizontally transmitted symbioses usually house multiple and variable symbiont genotypes that are acquired from a much more diverse environmental pool via partner choice mechanisms. However, in the deep-sea hydrothermal vent tubeworm Riftia pachyptila (Vestimentifera, Siboglinidae), it has been suggested that the Candidatus Endoriftia persephone symbiont is monoclonal. Here, we show with high-coverage metagenomics that adult R. pachyptila house a polyclonal symbiont population consisting of one dominant and several low-frequency variants. This dominance of one genotype is confirmed by multilocus gene sequencing of amplified housekeeping genes in a broad range of host individuals where three out of four loci ( atpA, uvrD and recA) revealed no genomic differences, while one locus ( gyrB) was more diverse in adults than in juveniles. We also analysed a metagenome of free-living Endoriftia and found that the free-living population showed greater sequence variability than the host-associated population. Most juveniles and adults shared a specific dominant genotype, while other genotypes can dominate in few individuals. We suggest that although generally permissive, partner choice is selective enough to restrict uptake of some genotypes present in the environment.


Asunto(s)
Gammaproteobacteria/fisiología , Genotipo , Poliquetos/microbiología , Agua de Mar/microbiología , Simbiosis , Animales , Gammaproteobacteria/genética , Variación Genética , Respiraderos Hidrotermales , Metagenómica , Océano Pacífico
3.
Proc Natl Acad Sci U S A ; 112(36): 11300-5, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26283348

RESUMEN

Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea hydrothermal vent tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by active larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments.


Asunto(s)
Bacterias/crecimiento & desarrollo , Respiraderos Hidrotermales/parasitología , Poliquetos/microbiología , Simbiosis , Animales , Bacterias/genética , Bacterias/ultraestructura , Carga Bacteriana , Muerte Celular , Microbiología Ambiental , Interacciones Huésped-Patógeno , Hibridación Fluorescente in Situ , Larva/microbiología , Microscopía Electrónica de Transmisión , Poliquetos/genética , Poliquetos/ultraestructura , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
4.
Environ Microbiol ; 17(4): 1397-413, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25212454

RESUMEN

Chlamydiae are a highly successful group of obligate intracellular bacteria infecting a variety of eukaryotic hosts. Outer membrane proteins involved in attachment to and uptake into host cells, and cross-linking of these proteins via disulfide bonds are key features of the biphasic chlamydial developmental cycle. In this study, we used a consensus approach to predict outer membrane proteins in the genomes of members of three chlamydial families. By analysing outer membrane protein fractions of purified chlamydiae with highly sensitive mass spectrometry, we show that the protein composition differs strongly between these organisms. Large numbers of major outer membrane protein-like proteins are present at high abundance in the outer membrane of Simkania negevensis and Waddlia chondrophila, whereas yet uncharacterized putative porins dominate in Parachlamydia acanthamoebae. Simkania represents the first case of a chlamydia completely lacking stabilizing cysteine-rich proteins in its outer membrane. In agreement with this, and in contrast to Parachlamydia and Waddlia, the cellular integrity of Simkania is not impaired by conditions that reduce disulfide bonds of these proteins. The observed differences in the protein composition of the outer membrane among members of divergent chlamydial families suggest different stabilities of these organisms in the environment, probably due to adaption to different niches or transmission routes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Chlamydia/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Chlamydia/química , Chlamydia/clasificación , Chlamydia/metabolismo , Secuencia Conservada , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
5.
Environ Microbiol ; 16(12): 3638-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24552661

RESUMEN

Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity.


Asunto(s)
Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/metabolismo , Respiraderos Hidrotermales , Poliquetos/microbiología , Poliquetos/fisiología , Simbiosis , Animales , Secuencia de Bases , Ciclo del Carbono , Ecosistema , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Genes de ARNr , Variación Genética , Hibridación Fluorescente in Situ , Mar Mediterráneo , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Poliquetos/clasificación , ARN Ribosómico 16S/genética , Azufre/metabolismo
6.
PLoS One ; 19(4): e0300758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557976

RESUMEN

Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 » turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.


Asunto(s)
Cilióforos , Gammaproteobacteria , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico 16S/genética , Cilióforos/genética , Gammaproteobacteria/genética , Análisis de Secuencia de ADN , ADN Bacteriano
7.
Mol Ecol Resour ; 24(1): e13889, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010882

RESUMEN

Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.


Asunto(s)
Bacterias , Genómica , Animales , Filogenia , ARN Ribosómico 16S/genética , Simbiosis , Azufre/metabolismo
8.
Org Divers Evol ; 13(3): 311-329, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25960690

RESUMEN

Sclerolinum is a small genus of Siboglinidae (Annelida) living in an obligate mutualistic association with thiotrophic bacteria as adults. Its taxonomic position, based on morphology, has been controversial; however, molecular data point to a sister taxa relationship with vestimentiferans. 16S rRNA gene sequencing and comparative morphology revealed that the studied population from deep-sea hydrocarbon seeps of the Gulf of Mexico belongs to Sclerolinum contortum known from the Arctic Sea. Since no anatomical and microanatomical studies have been published yet, we conducted such a study on S. contortum using serial sectioning and light and transmission electron microscopy. We show that the Sclerolinum body, divided into a head, trunk, and opisthosoma, is very similar to that of the vestimentiferans, and therefore we propose that the body regions are homologous in both taxa.

9.
Org Divers Evol ; 13(2): 163-188, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26074729

RESUMEN

Vestimentiferans (Siboglinidae, Polychaeta) live as juveniles and adults in an obligate mutualistic association with thiotrophic bacteria. Since their development is aposymbiotic, metatrochophores of vestimentiferans from the East Pacific Rise colonizing deep-sea hydrothermal vents are infected with the specific symbiont, develop the trophosome, and reduce their digestive system. To gain insight into the anatomy and ultrastructure and to compare this stage with metatrochophores from other siboglinids, we serial sectioned and reconstructed three specimens using light and transmission electron microscopy. The metatrochophore was composed of a prostomium, a small peristomium, two chaetigers (or two chaetigers and one additional segment without chaetae), and a minute pygidium. A digestive system and an intraepidermal nervous system were developed. Larval organs such as the prototroch, the neurotroch, and an apical organ were present, along with juvenile/adult organs such as tentacles, uncini, pyriform glands, and the anlage of the nephridial organ. We propose that in vestimentiferans, the vestimentum is the head arising from the prostomium, peristomium, and the anterior part of the first chaetiger. In frenulates, in contrast, the head is composed on the one hand of the cephalic lobe arising from the prostomium and on the other of the forepart developing from the peristomium and the anterior part of the first chaetiger. In frenulates the muscular septum between the forepart and trunk develops later than the first two chaetigers. Since this septum has no counterpart in vestimentiferans, the forepart-trunk border of frenulates is not considered homologous with the vestimentum-trunk border in vestimentiferans. The obturacular region in vestimentiferans does not appear to be a body region but rather the head appendages arising from the first chaetiger. In contrast, the tentacles in frenulates are prostomial head appendages. In both taxa, the trunk is the posterior part of the first chaetiger, and the opisthosoma is the following chaetigers and the pygidium. Comparisons with other polychaetes suggest that two larval segments are autapomorphic for the monophyletic Siboglinidae.

10.
Nature ; 441(7091): 345-8, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16710420

RESUMEN

Transmission of obligate bacterial symbionts between generations is vital for the survival of the host. Although the larvae of certain hydrothermal vent tubeworms (Vestimentifera, Siboglinidae) are symbiont-free and possess a transient digestive system, these structures are lost during development, resulting in adult animals that are nutritionally dependent on their bacterial symbionts. Thus, each generation of tubeworms must be newly colonized with its specific symbiont. Here we present a model for tubeworm symbiont acquisition and the development of the symbiont-housing organ, the trophosome. Our data indicate that the bacterial symbionts colonize the developing tube of the settled larvae and enter the host through the skin, a process that continues through the early juvenile stages during which the trophosome is established from mesodermal tissue. In later juvenile stages we observed massive apoptosis of host epidermis, muscles and undifferentiated mesodermal tissue, which was coincident with the cessation of the colonization process. Characterizing the symbiont transmission process in this finely tuned mutualistic symbiosis provides another model of symbiont acquisition and additional insights into underlying mechanisms common to both pathogenic infections and beneficial host-symbiont interactions.


Asunto(s)
Anélidos/microbiología , Anélidos/fisiología , Manantiales de Aguas Termales , Simbiosis , Animales , Anélidos/citología , Apoptosis , Bacterias/genética , Bacterias/aislamiento & purificación , Epidermis/microbiología , Hibridación Fluorescente in Situ , Larva/microbiología , Larva/fisiología , Mesodermo/microbiología
11.
Mol Ecol Resour ; 22(8): 3106-3123, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35699368

RESUMEN

The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.


Asunto(s)
Respiraderos Hidrotermales , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética , Azufre , Simbiosis/genética , Transposasas/genética
12.
PLoS One ; 17(2): e0254910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213532

RESUMEN

The mutualism between the thioautotrophic bacterial ectosymbiont Candidatus Thiobius zoothamnicola and the giant ciliate Zoothamnium niveum thrives in a variety of shallow-water marine environments with highly fluctuating sulfide emissions. To persist over time, both partners must reproduce and ensure the transmission of symbionts before the sulfide stops, which enables carbon fixation of the symbiont and nourishment of the host. We experimentally investigated the response of this mutualism to depletion of sulfide. We found that colonies released some initially present but also newly produced macrozooids until death, but in fewer numbers than when exposed to sulfide. The symbionts on the colonies proliferated less without sulfide, and became larger and more rod-shaped than symbionts from freshly collected colonies that were exposed to sulfide and oxygen. The symbiotic monolayer was severely disturbed by growth of other microbes and loss of symbionts. We conclude that the response of both partners to the termination of sulfide emission was remarkably quick. The development and the release of swarmers continued until host died and thus this behavior contributed to the continuation of the association.


Asunto(s)
Cilióforos/genética , Rhizobiaceae/genética , Sulfuros/metabolismo , Simbiosis/genética , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/fisiología , Bacterias/genética , Ciclo del Carbono/genética , Cilióforos/fisiología , Filogenia , Rhizobiaceae/fisiología
13.
Cell Tissue Res ; 337(1): 149-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19444472

RESUMEN

Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity.


Asunto(s)
Adaptación Fisiológica , Apoptosis , Proliferación Celular , Poliquetos/fisiología , Animales , Presión Atmosférica , Frío , Epidermis/fisiología , Epidermis/ultraestructura , Homeostasis , Calor , Inmunohistoquímica , Longevidad , Microscopía Electrónica de Transmisión , Poliquetos/ultraestructura , Simbiosis
14.
Sci Rep ; 9(1): 15081, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636334

RESUMEN

Evolutionary theory predicts potential shifts between cooperative and uncooperative behaviour under fluctuating environmental conditions. This leads to unstable benefits to the partners and restricts the evolution of dependence. High dependence is usually found in those hosts in which vertically transmitted symbionts provide nutrients reliably. Here we study host dependence in the marine, giant colonial ciliate Zoothamnium niveum and its vertically transmitted, nutritional, thiotrophic symbiont from an unstable environment of degrading wood. Previously, we have shown that sulphidic conditions lead to high host fitness and oxic conditions to low fitness, but the fate of the symbiont has not been studied. We combine several experimental approaches to provide evidence for a sulphide-tolerant host with striking polyphenism involving two discrete morphs, a symbiotic and an aposymbiotic one. The two differ significantly in colony growth form and fitness. This polyphenism is triggered by chemical conditions and elicited by the symbiont's presence on the dispersing swarmer. We provide evidence of a single aposymbiotic morph found in nature. We propose that despite a high fitness loss when aposymbiotic, the ciliate has retained a facultative life style and may use the option to live without its symbiont to overcome spatial and temporal shortage of sulphide in nature.


Asunto(s)
Bacterias/metabolismo , Cilióforos/microbiología , Interacciones Huésped-Patógeno , Sulfuros/farmacología , Simbiosis , Bacterias/efectos de los fármacos , Teorema de Bayes , Cilióforos/efectos de los fármacos , Cilióforos/crecimiento & desarrollo , Cilióforos/ultraestructura , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Simbiosis/efectos de los fármacos
15.
Appl Environ Microbiol ; 74(12): 3895-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18408062

RESUMEN

Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Helmintos/microbiología , Manantiales de Aguas Termales/microbiología , Agua de Mar/microbiología , Simbiosis , Animales , Fenómenos Fisiológicos Bacterianos , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Helmintos/fisiología , Hibridación Fluorescente in Situ , Filogenia , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
ISME J ; 12(3): 714-727, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29426952

RESUMEN

The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.


Asunto(s)
Gammaproteobacteria/fisiología , Oligohimenóforos/microbiología , Oligohimenóforos/fisiología , Simbiosis , Autorradiografía , Carbono/metabolismo , Ciclo del Carbono , Crecimiento Quimioautotrófico , Gammaproteobacteria/genética , Hibridación Fluorescente in Situ , Espectrometría de Masas , Oxidación-Reducción , Sulfuros/metabolismo
17.
Proc Biol Sci ; 274(1623): 2259-69, 2007 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-17660153

RESUMEN

Zoothamnium niveum (Ciliophora, Oligohymenophora) is a giant, colonial marine ciliate from sulphide-rich, shallow-water habitats, obligatorily associated with the ectosymbiotic, chemoautotrophic, sulphide-oxidizing bacterium 'Candidatus Thiobios zoothamnicoli'. The aims of this study were to characterize the natural habitat and investigate growth, reproduction, survival and maintenance of the symbiosis from Corsica, France (Mediterranean Sea) using a flow-through respirometer providing stable chemical conditions. We were able to successfully cultivate the Z. niveum symbiosis during its entire lifespan and document reproduction, whereby the optimum conditions were found to range from 3 to 33 micromol l(-1) sigmaH2S in normoxic seawater. Starting with an inoculum of 13 specimens, we found up to 173 new specimens that were asexually produced after only 11 days. Observed mean lifespan of the Z. niveum colonies was approximately 11 days and mean colony size reached 51 branches, from which rapid host division rates of up to every 4.1 hours were calculated. Comparing the ectosymbiotic population from Z. niveum colonies collected from their natural habitat with those cultivated under optimal conditions, we found significant differences in the bacterial morphology and the frequency of dividing cells on distinct host parts, which is most likely caused by behaviour of the host ciliate. Applying different sulphide concentrations we revealed that the symbiosis was not able to survive without sulphide and was harmed by high sulphide conditions. To our knowledge, this study reports the first successful cultivation of a thiotrophic ectosymbiosis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Oligohimenóforos/fisiología , Agua de Mar/química , Sulfuros/farmacología , Simbiosis/efectos de los fármacos , Animales , Gammaproteobacteria/efectos de los fármacos , Gammaproteobacteria/fisiología , Mar Mediterráneo , Oligohimenóforos/efectos de los fármacos , Oligohimenóforos/microbiología , Reproducción , Agua de Mar/microbiología
18.
Sci Rep ; 7(1): 3394, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611430

RESUMEN

Free-living amoebae are well known for their role in controlling microbial community composition through grazing, but some groups, namely Acanthamoeba species, also frequently serve as hosts for bacterial symbionts. Here we report the first identification of a bacterial symbiont in the testate amoeba Cochliopodium. The amoeba was isolated from a cooling tower water sample and identified as C. minus. Fluorescence in situ hybridization and transmission electron microscopy revealed intracellular symbionts located in vacuoles. 16S rRNA-based phylogenetic analysis identified the endosymbiont as member of a monophyletic group within the family Coxiellaceae (Gammaprotebacteria; Legionellales), only moderately related to known amoeba symbionts. We propose to tentatively classify these bacteria as 'Candidatus Cochliophilus cryoturris'. Our findings add both, a novel group of amoeba and a novel group of symbionts, to the growing list of bacteria-amoeba relationships.


Asunto(s)
Amebiasis/microbiología , Amébidos/clasificación , Coxiellaceae/fisiología , Filogenia , Simbiosis , Amébidos/aislamiento & purificación , ARN Bacteriano/análisis , ARN Ribosómico 16S
19.
J Morphol ; 267(7): 866-83, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16628624

RESUMEN

Little detailed information exists on the anatomy of the nervous system and the musculature of Entoprocta. Herein we describe the distribution of the neurotransmitters RFamide and serotonin as well as the myo-anatomy of adults and asexually produced budding stages of the solitary entoproct species Loxosomella vivipara and L. parguerensis using immunocytochemistry and epifluorescence as well as confocal microscopy. The development of the RFamidergic and serotonergic nervous system starts in early budding stages. In the adults, RFamide is present in the bilateral symmetric cerebral ganglion, a pair of oral nerves that innervate two pairs of nerve cell clusters in the heel of the foot, a pair of aboral nerves, the paired lateral nerves, the calyx nerves, the atrial ring nerve, the tentacle nerves, the stomach nerves, and the rectal nerves. Serotonin is only found in the cerebral ganglion, the oral nerves, and in the tentacle nerves. Some differences in the distribution of both neurotransmitters were found between L. vivipara and L. parguerensis and are most obvious in the differing number of large serotonergic perikarya associated with the oral nerves. Nerves arising from the cerebral ganglion and running in a ventral direction have not been described for Entoprocta before, and the homology of these to the ventral nerve cords of other Spiralia is considered possible. The body musculature of both Loxosomella species comprises longitudinal and diagonal muscles in the foot, the stalk, and the calyx. We found several circular muscles in the calyx. The stalk and parts of the foot and the calyx are surrounded by a fine outer layer of ring muscles. In addition to the congruent details regarding the myo-anatomy of both species, species-specific muscle structures could be revealed. The comparison of our data with recent findings of the myo-anatomy of two Loxosoma species indicates that longitudinal and diagonal body muscles, atrial ring muscles, tentacle muscles, esophageal and rectal ring muscles, as well as intestinal and anal sphincters are probably part of the ancestral entoproct muscle bauplan.


Asunto(s)
Briozoos/anatomía & histología , Músculos/anatomía & histología , Actinas/análisis , Animales , Briozoos/química , Briozoos/ultraestructura , Ganglios de Invertebrados/anatomía & histología , Ganglios de Invertebrados/química , Ganglios de Invertebrados/ultraestructura , Inmunohistoquímica/métodos , Larva/anatomía & histología , Larva/química , Larva/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Músculos/química , Músculos/ultraestructura , Sistema Nervioso/anatomía & histología , Sistema Nervioso/química , Sistema Nervioso/ultraestructura , Neuropéptidos/análisis , Serotonina/análisis
20.
PLoS One ; 11(9): e0162834, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683199

RESUMEN

Symbioses between ciliate hosts and prokaryote or unicellular eukaryote symbionts are widespread. Here, we report on a novel ciliate species within the genus Zoothamnium Bory de St. Vincent, 1824, isolated from shallow-water sunken wood in the North Adriatic Sea (Mediterranean Sea), proposed as Zoothamnium ignavum sp. nov. We found this ciliate species to be associated with a novel genus of bacteria, here proposed as "Candidatus Navis piranensis" gen. nov., sp. nov. The descriptions of host and symbiont species are based on morphological and ultrastructural studies, the SSU rRNA sequences, and in situ hybridization with symbiont-specific probes. The host is characterized by alternate microzooids on alternate branches arising from a long, common stalk with an adhesive disc. Three different types of zooids are present: microzooids with a bulgy oral side, roundish to ellipsoid macrozooids, and terminal zooids ellipsoid when dividing or bulgy when undividing. The oral ciliature of the microzooids runs 1» turns in a clockwise direction around the peristomial disc when viewed from inside the cell and runs into the infundibulum, where it makes another ¾ turn. The ciliature consists of a paroral membrane (haplokinety), three adoral membranelles (polykineties), and one stomatogenic kinety (germinal kinety). One circular row of barren kinetosomes is present aborally (trochal band). Phylogenetic analyses placed Z. ignavum sp. nov. within the clade II of the polyphyletic family Zoothamniidae (Oligohymenophorea). The ectosymbiont was found to occur in two different morphotypes, as rods with pointed ends and coccoid rods. It forms a monophyletic group with two uncultured Gammaproteobacteria within an unclassified group of Gammaproteobacteria, and is only distantly related to the ectosymbiont of the closely related peritrich Z. niveum (Hemprich and Ehrenberg, 1831) Ehrenberg, 1838.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA