Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 258: 119351, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844030

RESUMEN

The sustainable management of huge volume of agricultural waste in India can be resolved through composting and used as soil amendment. Agriculture waste compost amendments can optimistically alter the physicochemical (pH, C, N, & P) as well as biological nature (microbial activity/biomass and enzymatic activity) of infertile soil. Hence this study, the agriculture wastes such as sugarcane trash, corn stover, and pearl millet stalks were converted to composite through decomposition pit. Interestingly, test crops residues individual composites and their mixed form contained considerable quantity of vital elements like TC, TN, TP, TK, and C:N ratio and can effectively convert infertile soil to fertile soil. These test crop composites also had a significant impact on MBN (42.3 µg g-1), MBC (198.4 µg g-1), and MBP (196.4 µg g-1) in test soil, as well as dehydrogenase and alkaline phosphatase enzyme activity. However, the mixed composite effects are significantly greater than the individual test crop composite effects. Furthermore, it effectively remediates/converts infertile soil to fertile soil, and it ultimately demonstrated positive effects on Vigna mungo biometric (SH, RH, WB, and DB) and biomolecule (total chlorophyll, total carbohydrate, and total proteins) profiles, followed by individual test crop composites. According to the findings of this study, the incorporation of crop residue-based mixed composite significantly transforms infertile soil into fertile soil and promotes the growth of V. mungo.

2.
Environ Res ; 258: 119486, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925464

RESUMEN

This present study enlightens the eco-friendly green synthesis of ZSM-5 from natural clay montmorillonite, and its proper incorporation with 'Ni'. Nickle (Ni) was wet impregnated onto HZSM-5 and the resulting catalyst was characterized by various techniques including XRD, BET, N2 Sorption Studies, TPD, SEM and TEM techniques. The SEM images revealed the uniform distribution of Ni over HZSM-5 zeolite catalyst and the XRD results indicated the undistorted crystalline structure of HZSM-5 even after impregnation of Ni. The latter part of the work concentrates on the strength of the catalyst in cracking oil derived from discarded fish parts. Discarded fish waste was pyrolyzed to obtain the fish oil, which was then used for cracking studies. The fish oil was efficiently converted (99% conversion) by Ni/ZSM5 (50 wt %) and yielded 70% liquid fractions, which formed gasoline (78.6%), kerosene (12.3%) and diesel (9.1%). The research is a complete parcel to examine the working potential of the produced biofuel in pre-existing engines. The quality of gasoline fraction was tested according to ASTM standards, which showed that the heating value was slightly lower compared to fossil gasoline. The torque and brake fuel consumption were also examined and it indicated that the fish oil derived gasoline fuel may need to be mixed with the commercial gasoline to optimize its performance.

3.
Environ Res ; 258: 119449, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901814

RESUMEN

In the current study, Coccinia grandis fruit extract was used to synthesize calcium oxide nanoparticles (CaO NPs) in an economical and environmentally friendly manner. UV-Vis spectroscopy and Fourier transform infrared spectroscopy revealed that the phytoconstituents found in Coccinia grandis fruit extract facilitated the production of CaO NPs by acting as better stabilizing, biodegradable, and reducing agents. The synthesized CG-CaO NPs were also tested for photocatalytic activity in the breakdown of selective dyes such as methyl red, methyl orange, and methylene blue in the presence of sunlight. The degradation percentage was determined by analyzing the color removal rates for all dye components. After 6 h of reaction, the IC50 values for methyl red, methyl orange, as well as methylene blue dyes were 73, 107, and 133, respectively. The CG-CaO NPs were further evaluated for their antimicrobial activity against specific bacteria and fungi using the agar-well diffusion method. 200 µg/mL CG-CaO NPs inhibited Aspergillus niger, Escherichia coli, Salmonella typhi, Streptococcus mutans, and Staphylococcus aureus at zones of 13, 14, 16, 14, and 15 mM, respectively. Further checkerboard assay confirmed the antagonism effect with gentamicin. Also, Artemia salina toxicity assay showed that the LD50 value of CaO NPs was 400 µg/mL of CaO NPs. The findings confirm that Coccinia grandis-mediated CG-CaO NPs can be used effectively in antimicrobial and environmental settings.

4.
Environ Res ; 258: 119407, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897435

RESUMEN

The aim of the work is to find the efficiency of solar power in biodiesel preparation from mackerel fish. The paper also focusses on the ability of MgO/graphene prepared by one-pot synthesis using combustion methodology. The physicochemical properties of the material were analysed by XRD, N2 sorption studies, BET sorption analysis and SEM. The adsorption studies revealed the porosity of the graphene is intact, and the morphology studies indicated that MgO is uniformly distributed on the graphene surface. The highest biodiesel yield of 98.95% was obtained using the solar-powered Fresnel solar concentrator at 12.30 p.m in 6 min reaction time using 3 wt% MgO/GO catalyst at 65 °C. Conventional heating produced only 75% biodiesel at the same reaction condition, consuming25 min to complete. The solar assisted biodiesel had better HHV of 37.81 MJ/Kg, viscosity of 4.3 mm2/s, pour point of -15 °C, and a density of 0.875 g/mL. The optimized catalyst showed a shelf life of 5 cycles. The results portray the efficacy of natural energy source in alternative liquid fuel production.

5.
Environ Res ; 258: 119427, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889840

RESUMEN

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.

6.
Environ Res ; 251(Pt 2): 118350, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341072

RESUMEN

The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R2 0.9) and pseudo-first-order (R2 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.


Asunto(s)
Nanoestructuras , Pirenos , Pirenos/química , Nanoestructuras/química , Contaminantes Químicos del Agua/química , Zinc/química , Cadmio/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química
7.
Environ Res ; 241: 117348, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37821064

RESUMEN

Attributional life cycle assessment study examines the environmental impact of raw materials, machinery, and unit operations. In the present work, an attributional life cycle assessment (LCA) was employed to assess the environmental and greenhouse gas impacts of a shrimp feed production system. A commercial shrimp feed mill in Tamil Nadu, India, provided inventory data for one-ton shrimp feed (functional unit) for a Cradle-to-Gate evaluation using environmental impact methodologies, specifically Impact 2002+ in SimaPro® (V9.3.0.3) software. The results showed that human health (0.003357 DALY), ecosystem quality (2720.518 PDF × m2 × yr), climate change (2031.696 kg CO2 eq), and resources (71019.42 MJ primary) were the most significantly impacted. The human health category was found to be the most prominent after normalization and weighting (0.47 pt), and strategies were suggested accordingly. The GWP20 and GWP100 measures for long-term climate change were calculated to be 8.7 and 7.33 kg CO2 eq, respectively. Cast iron used in machinery production (GWP 20-15.40%, GWP100-134.5%) and electricity use (GWP 20-6.13%, GWP 100-6.9%) accounted for sizable portions of the burden. Feed production is estimated to contribute 0.2% of global CO2 emissions within the proposed global context. These findings are significant regarding economically and environmentally sustainable shrimp feed production worldwide.


Asunto(s)
Gases de Efecto Invernadero , Humanos , Ecosistema , Dióxido de Carbono/análisis , India , Ambiente , Acuicultura
8.
Environ Res ; 250: 118414, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365050

RESUMEN

The present study reports the synthesis, characterization, and application of sustainable magnetic biochar composite. The inedible fruits of Vateria indica, a powerful ayurvedic plant were hydrothermally transformed into magnetic biochar (BC-Fe3O4) in a single step and characterized by several sophisticated techniques. FESEM analysis portrayed fibrous irregular mesh-like biochar with surface clustered Fe3O4 nanoparticles, while the incidence of carbon, oxygen, and iron in the elemental analysis by EDS established magnetic biochar formation. Numerous peaks consistent with planes of (220), (311), (400), (422), (511), (440), and (120) also substantiated the occurrence of magnetite nanoparticles and biochar respectively, as analyzed by XRD. XPS analysis showed signals at 285.65 eV, 533.28 eV, 711.08 eV, and 724.68 eV corroborating a strong C-O bond, O1s orbit, Fe2+, and Fe3+ respectively. BC-Fe3O4 was superparamagnetic with saturation magnetization of 4.74 emu/g, as per VSM studies, while its specific surface area, pore volume, and pore diameter were 5.74 m2/g, 0.029 cm3/g, and 20.86 nm respectively. The Fenton-like degradation of methylene blue (5.0-25.0 ppm) was accomplished by synthesized BC-Fe3O4, in the presence of H2O2. Within 180 min, almost complete degradation was achieved, with first-order kinetics having rate constants between 0.0299 and 0.0167 min-1. Stability and recyclability studies performed over 7 cycles exhibited unaltered degradation between 93.98 and 97.59%. This study exhibits the exceptional characteristics and degradation capabilities of BC-Fe3O4 synthesized from a sustainable plant biomass.


Asunto(s)
Carbón Orgánico , Carbón Orgánico/química , Frutas/química , Colorantes/química , Peróxido de Hidrógeno/química , Hierro/química , Catálisis , Contaminantes Químicos del Agua/química
9.
Environ Res ; 246: 118061, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157967

RESUMEN

This research was performed to investigate the bactericidal and fungicidal competence of extracts (methanol and petroleum ether extract) of Polyalthia longifolia leaf. Moreover, the major active compounds present in the effective crude extract (either methanol or petroleum ether extract) was determined through initially with UV-Vis spectra, FTIR, and GC-MS analyses. The methanol extract alone showed remarkable bactericidal and fungicidal activity against the bacterial (S. pyogenes > E. coli > S. aureus > S. pneumoniae > C. difficile > P. aeruginosa) and fungal (A. clavatus > C. albicans > A. niger > A. fumigatus > C. tropicalis > C. auris) pathogens at increased concentration (12.5 mg mL-1) than petroleum ether extract. The MIC and MBC values of methanol extract were found as 10-20 mg mL-1 and 30-40 mg mL-1 respectively. The MFC value of methanol extract was found as 10-20 mg mL-1. These MIC, MBC, and MFC values of methanol extract were considerably greater than petroleum ether extract. The FTIR and GC-MS characterization studies revealed that the presence of more acre functional groups belonging to bioactive compounds such as Z)-7-Hexadecenal, Aromandendrene, α-Curcumene, Caryophyllene, Methyl 14-methyl Pentadecanoat, Methyl trans-13-Octadecenoate, 9-Octadecenoic acid (Z)-, and 2-hydroxy-1- (hydroxymethyl)ethyl. As a result of these findings, it is possible that P. longifolia leaf methanol extract contains medicinally important bioactive substances with bactericidal and fungicidal properties.


Asunto(s)
Alcanos , Antiinfecciosos , Clostridioides difficile , Fungicidas Industriales , Polyalthia , Extractos Vegetales/farmacología , Metanol , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Solventes , Candida albicans
10.
Environ Res ; 252(Pt 1): 118454, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387488

RESUMEN

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.


Asunto(s)
Níquel , Hidrocarburos Policíclicos Aromáticos , Níquel/química , Hidrocarburos Policíclicos Aromáticos/química , Nanopartículas del Metal/química , Catálisis , Fotólisis , Rayos Ultravioleta , Nanopartículas/química , Concentración de Iones de Hidrógeno , Antracenos/química , Adsorción
11.
Environ Res ; 217: 114926, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435494

RESUMEN

Ho Chi Minh (HCM) City is the most important urban region of Vietnam, Southeast Asia. In recent times, the quantity of electronic waste (e-waste) has been growing by several thousand tonnes every year. In this research, some of the existing and developing technologies being employed for the recycling of e-waste have been reviewed. Accordingly, the paper has been divided into three sections namely, e-waste treatment technologies in Ho Chi Minh City, the effect of heavy metals on human health and the extraction of metals from e-waste using pyrolysis, hydrometallurgy, bioleaching, mechanical, and air classifier methods, respectively. The extraction of precious metals and heavy metals such as Cd, Cr, Pb, Hg, Cu, Se, and Zn from e-waste can be hazardous to human health. For example, lead causes hazards to the central and peripheral nervous systems, blood system and kidneys; copper causes liver damage; chronic exposure to cadmium ends up causing lung cancer and kidney damage, and mercury can cause brain damage. Thus, this study examines the key findings of many research and review articles published in the field of e-waste management and the health impacts of metal pollution.


Asunto(s)
Residuos Electrónicos , Mercurio , Metales Pesados , Humanos , Residuos Electrónicos/análisis , Vietnam , Metales Pesados/análisis , Cobre , Cadmio , Reciclaje , China
12.
Environ Res ; 220: 115136, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584851

RESUMEN

The present focused on comparative study on synthesis of ZnO nanoparticles (ZnO NPs) using chemical method via alkaline precipitation method (ZnO(A) NPs) using NaOH and biogenic method using termite mound extract (ZnO(B) NPs). GC-MS analysis revealed that D-limonene present in termite mound extract might be responsible for the synthesis of ZnO(B) NPs. XRD patterns confirmed hexagonal crystalline structure of ZnO(A) and (B) NPs. Results of antibacterial activity illustrated that ZnO(B) NPs showed its potential against Pseudomonas aeruginosa, ESBL-1, ESBL-2 and EBSL-3. Antibiofilm studies revealed that ZnO(B) NPs exhibited optimum decline in MRSA biofilm formation than ZnO(A) NPs. In addition, ZnO(B) NPs showed potent cytotoxic effect against lung cancer cell lines A549 with IC50 of 35.16 ± 0.10 µg/mL in comparison with ZnO(A) NPs (IC50- 55.09 ± 0.30 µg/mL). Overall, the results revealed that biogenic synthesis of ZnO NPs ensures its biosafety level and enhanced biological activity when compared to chemical synthesis method.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Biopelículas
13.
Environ Res ; 216(Pt 3): 114765, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356661

RESUMEN

The focus point of this current work is to evaluate the anticancer and growth inhibitory efficacy of compounds 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3ß-ol (LT1), and Ergosta-5,7,22-trien-3ß-ol (LT2) of Lentinus tuberregium (Fr.) on three cell lines such as A673 (Rhabdomyosarcoma), MCF7 (breast cancer), and HCT116 (colorectal carcinoma) by MTT assay. LT1 and LT2 exerted maximal growth inhibition in the order as A673 > HCT116 > MCF7. Comparatively, LT1 was more potent in causing cell growth inhibition than LT2 in the A673 cancer cell line. Based on the MTT assay, A673 cells alone proceeded further as a model to evaluate the anticancer potential of LT1 and LT2 at three different semilogarithmic concentrations (3, 10, 30 µM). The cells exposed with compounds at 24 and 48 h were analyzed by flow cytometry. Exposure of LT1 at 3 and 10 µM concentrations for 24 h caused a G2-M arrest. At 10 µM concentration, cells also accumulated in the G0-G1 phase, indicating a G1 block. These effects were only transient as prolonged exposure (48 h) of LT1 treatment brought back the cell population to normalcy. Both the compounds only at 30 µM concentration have the potential to induce a hypodiploid peak (sub G0), indicating an induction of apoptosis which was explicit by nuclear condensation and fragmentation of nuclei in cells. The dose-dependent and compound-specific apoptotic induction was further confirmed by caspase activity higher in LT1 than LT2. The results highlight the significant growth inhibitory activity and anticancer potential of LT1 and LT2 which are recommended for further in-depth analysis.


Asunto(s)
Agaricales , Lentinula , Trientina , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular
14.
Environ Res ; 238(Pt 1): 117118, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704075

RESUMEN

A biofilm consists of Gram positive and Gram-negative bacteria enclosed in a matrix. Industrial biofouling is caused by biofilms, which can exhibit antimicrobial resistance during infections. Many biofilm studies find that nearly all biofilm communities consist of Gram positive and Gram-negative bacteria. It is therefore necessary to better understand the conserved themes in biofilm formation to develop therapeutics based on biofilm formation. Plant extracts can effectively combat pathogenic bacterial biofilms. This study evaluated the antibacterial and antibiofilm activity of Aerva lanata flower extract against Staphylococcus aureus and Pseudomonas aeruginosa. Methanol extract of dried A. lanata flower was tested against S. aureus and P. aeruginosa to determine the antibacterial activity (10, 25, 50, 75, 100 µg/mL) resulted in a maximum of 0.5-1 log reduction and 2 log reduction in comparison to the control or untreated bacterial cells respectively. A. lanata showed maximum biofilm inhibition up to 1.5-fold and 1-fold against P. aeruginosa and S. aureus. Light microscopic analysis of biofilm treated with A. lanata extract showed efficient distortion of the biofilm matrix. Further, the in vivo analysis of A. lanata in the Artemia salina brine shrimp model showed >50% survival and thus proving the efficacy of A. lanata extract in rescuing the brine shrimps against P. aeruginosa and S. aureus infection.


Asunto(s)
Artemia , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Bacterias Gramnegativas , Extractos Vegetales/farmacología , Flores , Biopelículas , Pruebas de Sensibilidad Microbiana
15.
Environ Res ; 231(Pt 1): 115983, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37137456

RESUMEN

The bio-based nanoparticles synthesis and assessment of their potential biomedical applications related research is rapidly emerging. The ability of an aqueous ethanolic bark extract of Mangifera indica to synthesize silver nanoparticles (AgNPs) as well as its antibacterial, anti-inflammatory, and anticancer activities were investigated in this study. Interestingly, the bark extract effectively synthesized the AgNPs, including an absorbance peak at 412 nm and sizes ranging from 56 to 89 nm. The Fourier Transform Infrared spectroscopy (FTIR) analysis confirmed that the presence of most essential functional groups belongs to the most bioactive compounds. Synthesized AgNPs showed fine antibacterial activity against the Urinary Tract Infection (UTI) causing bacterial pathogens such as Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus saprophyticus at 50 µg mL-1 concentrations. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against these pathogens were found as 12.5 ± 0.8 & 13 ± 0.6, 13.6 ± 0.5 & 14 ± 0.7, 11.5 ± 0.3 & 11.5 ± 0.4, 13 ± 0.8 & 13 ± 0.7, and 11.8 ± 0.4 & 12 ± 0.8 µg mL-1 respectively. Interestingly, this AgNPs also possesses outstanding anti-inflammatory and anticancer activities as studied against the egg albumin denaturation (85%) inhibition and MCF 7 (Michigan Cancer Foundation-7: breast cancer cells) cell line (cytotoxicity: 80.1%) at 50 µg mL-1 concentration. Similarly at 50 µg mL-1 concentration showed 75% of DPPH radical scavenging potential. These activities were dose dependent, and the findings suggest that the M. indica bark aqueous ethanolic extract synthesized AgNPs can be used as antibacterial, anti-inflammatory, and anticancer agents after in-vivo testing.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Anticoagulantes , Espectroscopía Infrarroja por Transformada de Fourier
16.
Environ Res ; 237(Pt 2): 117005, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669733

RESUMEN

Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.

17.
Environ Res ; 231(Pt 1): 116097, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182827

RESUMEN

Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Humanos , Agua , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Biodegradación Ambiental , Estrona/análisis , Contaminantes Químicos del Agua/análisis
18.
Environ Res ; 231(Pt 2): 116193, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217126

RESUMEN

Titanium-based metals are used most often in biomedical implant studies because they have good qualities like being biocompatible, not being poisonous, Osseo-integration, high specific properties, wear resistance, etc. The main goal of this work is to improve the wear resistance of Ti-6Al-7Nb biomedical metal by using a mix of Taguchi, ANOVA, and Grey Relational Analysis. The effect of changeable control process factors like applied load, spinning speed, and time on wear reaction measures like wear rate (WR), coefficient of friction (COF), and frictional force. The optimal combinations of wear rate, COF, and frictional force minimise wear characteristics. The L9 Taguchi orthogonal array was used to plan the experiments, which were done on a pin-on-disc set-up according to ASTM G99. To find the best set of control factors, Taguchi, ANOVA, and Grey relationship analysis were used. The results show that a load of 30 N, a speed of 700 rpm, and a time of 10 min are the best control settings.


Asunto(s)
Calor , Titanio , Fricción , Aleaciones , Propiedades de Superficie
19.
Environ Res ; 227: 115782, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990196

RESUMEN

In recent years, the biosynthesis of silver (Ag) nanoparticles has attracted a great deal of interest for applications in biomedicine and bioremediation. In the present study, Gracilaria veruccosa extract was used to synthesize Ag nanoparticles for investigating their antibacterial and antibiofilm potentials. The color shift from olive green to brown indicated the synthesis of AgNPs by plasma resonance at 411 nm. Physical and chemical characterization revealed that AgNPs of 20-25 nm sizes were synthesized. Detecting functional groups, such as carboxylic acids and alkenes, suggested that the bioactive molecules in the G. veruccosa extract assisted the synthesis of AgNPs. X-ray diffraction verified the s purity and crystallinity of the AgNPs with an average diameter of 25 nm, while DLS analysis showed a negative surface charge of -22.5 mV. Moreover, AgNPs were tested in vitro for antibacterial and antibiofilm efficacies against S. aureus. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 3.8 µg/mL. Light and fluorescence microscopy proved the potential of AgNPs to disrupt the mature biofilm of S. aureus. Therefore, the present report has deciphered the potential of G. veruccosafor the synthesis of AgNPs and targeted the pathogenic bacteria S. aureus.


Asunto(s)
Gracilaria , Nanopartículas del Metal , Algas Marinas , Staphylococcus aureus , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química
20.
Environ Res ; 229: 115964, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100363

RESUMEN

Wood is an insulator material, using its porous structure to endow it with efficient microwave absorption and broaden its application range is still a major challenge. Here, wood-based Fe3O4 composites with excellent microwave absorption properties and high mechanical strength were prepared by alkaline sulfite method, in-situ co-precipitation method and compression densification method. The results showed that the magnetic Fe3O4 was densely deposited in the wood cells, and the prepared wood-based microwave absorption composites had both high electrical conductivity, magnetic loss, excellent impedance matching performance and attenuation performance, as well as effective microwave absorption properties. In the frequency range of 2-18 GHz, the minimum reflection loss value was -25.32 dB. At the same time, it had high mechanical properties. Compared with the untreated wood, its modulus of elasticity (MOE) in bending increased by 98.77%, and modulus of rapture (MOR) in bending improved by 67.9%. The developed wood-based microwave absorption composite is expected to be used in electromagnetic shielding fields such as anti-radiation and anti-interference.


Asunto(s)
Óxido Ferrosoférrico , Madera , Campos Electromagnéticos , Microondas , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA