Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 61(7): e0019923, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338371

RESUMEN

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug-resistant clone, although its clinical impact on patients with bloodstream infection (BSI) is incompletely understood. This study aims to further define the risk factors, clinical outcomes, and bacterial genetics associated with ST131 BSI. A prospectively enrolled cohort study of adult inpatients with E. coli BSI was conducted from 2002 to 2015. Whole-genome sequencing was performed with the E. coli isolates. Of the 227 patients with E. coli BSI in this study, 88 (39%) were infected with ST131. Patients with E. coli ST131 BSI and those with non-ST131 BSI did not differ with respect to in-hospital mortality (17/82 [20%] versus 26/145 [18%]; P = 0.73). However, in patients with BSI from a urinary tract source, ST131 was associated with a numerically higher in-hospital mortality than patients with non-ST131 BSI (8/42 [19%] versus 4/63 [6%]; P = 0.06) and increased mortality in an adjusted analysis (odds ratio of 5.85; 95% confidence interval of 1.44 to 29.49; P = 0.02). Genomic analyses showed that ST131 isolates primarily had an H4:O25 serotype, had a higher number of prophages, and were associated with 11 flexible genomic islands as well as virulence genes involved in adhesion (papA, kpsM, yfcV, and iha), iron acquisition (iucC and iutA), and toxin production (usp and sat). In patients with E. coli BSI from a urinary tract source, ST131 was associated with increased mortality in an adjusted analysis and contained a distinct repertoire of genes influencing pathogenesis. These genes could contribute to the higher mortality observed in patients with ST131 BSI.


Asunto(s)
Infecciones por Escherichia coli , Sepsis , Infecciones Urinarias , Sistema Urinario , Adulto , Humanos , Escherichia coli/genética , Estudios de Cohortes , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Antibacterianos , beta-Lactamasas/genética
2.
BMC Infect Dis ; 23(1): 556, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641085

RESUMEN

BACKGROUND: Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS: Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS: The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION: Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.


Asunto(s)
Colistina , Agricultores , Humanos , Animales , Porcinos , Colistina/farmacología , Tailandia/epidemiología , Escherichia coli , Genómica , Klebsiella
3.
BMC Genomics ; 23(1): 417, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35658876

RESUMEN

BACKGROUND: The SARS-CoV-2 Delta variant was first identified in the U.S. in March 2021 and has rapidly become the predominant lineage across the U.S. due to increased transmissibility, immune evasion and vaccine breakthrough. The aim of this study was to better understand the genetic diversity and the potential impact of mutations observed in SARS-CoV-2 viruses circulating in the U.S. in vaccinated individuals. RESULTS: Whole genome sequencing was performed on thirty-four SARS-CoV-2 positive samples using the Oxford Nanopore MinION. Evolutionary genomic analysis revealed two novel mutations, ORF1b:V2354F and a premature stop codon, ORF7a:Q94*, identified in a cluster of SARS-CoV-2 Delta isolates collected from vaccinated individuals in Colorado. The ORF1b:V2354F mutation, corresponding to NSP15:V303F, may induce a conformational change and result in a disruption to a flanking beta-sheet structure. The premature stop codon, ORF7a:Q94*, truncates the transmembrane protein and cytosolic tail used to mediate protein transport. This may affect protein localization to the ER-Golgi. In addition to these novel mutations, the cluster of vaccinated isolates contain an additional mutation in the spike protein, at position 112, compared to the Delta variant defining mutations. This mutation, S112L, exists in isolates previously obtained in the U.S. The S112L mutation substitutes a bulky hydrophobic side chain for a polar side chain, which results in a non-conservative substitution within the protein that may affect antibody-binding affinity. Additionally, the vaccinated cluster of isolates contains non-synonymous mutations within ORF8 and NSPs which further distinguish this cluster from the respective ancestral Delta variant. CONCLUSIONS: These results show there is an emerging sub-lineage of the ancestral Delta variant circulating in the U.S. As mutations emerge in constellations, those with a potentially beneficial advantage to the virus may continue to circulate while others will cease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Codón sin Sentido , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
J Infect Dis ; 224(7): 1236-1246, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32239170

RESUMEN

Vertical transmission of maternal microbes is a major route for establishing the gut microbiome in newborns. The impact of perinatal antibiotics on vertical transmission of microbes and antimicrobial resistance is not well understood. Using a metagenomic approach, we analyzed the fecal samples from mothers and vaginally delivered infants from a control group (10 pairs) and a treatment group (10 pairs) receiving perinatal antibiotics. Antibiotic-usage had a significant impact on the main source of inoculum in the gut microbiome of newborns. The control group had significantly more species transmitted from mothers to infants (P = .03) than the antibiotic-treated group. Approximately 72% of the gut microbial population of infants at 3-7 days after birth in the control group was transmitted from their mothers, versus only 25% in the antibiotic-treated group. In conclusion, perinatal antibiotics markedly disturbed vertical transmission and changed the source of gut colonization towards horizontal transfer from the environment to the infants.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Transmisión Vertical de Enfermedad Infecciosa , Antibacterianos/efectos adversos , Estudios de Casos y Controles , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Metagenómica , Parto , Embarazo
5.
BMC Infect Dis ; 21(1): 142, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541274

RESUMEN

BACKGROUND: Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) have continually grown as a global public health threat, with significant mortality rates observed across the world. We examined the clinical data from patients with CPE infections and their outcomes, concentrating on Klebsiella pneumoniae isolates. We analysed the clinical information, performed antimicrobial susceptibility testing, and conducted molecular epidemiological and genomic analyses on the isolates to identify patterns in the data. METHODS: The clinical characteristics of 33 hospitalised patients with confirmed CPE, including patient-related factors associated with the development of CPE infections, were examined. Patients were divided according to whether they were "colonised" or "infected" with CPE and by the timing and frequency of their rectal swab collections, from which 45 swabs were randomly selected for analysis. CPE isolates were purified, and antimicrobial susceptibility tests performed. Whole genome sequences of these isolates were determined and analysed to compute bacterial multilocus sequence types and plasmid replicon types, infer phylogenetic relationships, and identify antimicrobial resistance and virulence genes. RESULTS: Altogether, 88.9% (40/45) of the CPE isolates were K. pneumoniae. The most abundant carbapenemase gene family in the K. pneumoniae isolates (33/39) was blaOXA-232, with blaNDM-1 additionally identified in 19 of them. All CPE isolates carrying either blaOXA-232 or blaNDM-1 were resistant to meropenem, but only 40 from 45 were susceptible to colistin. Among the CPE-infected patients (n = 18) and CPE-colonised patients who developed CPE infections during the study (n = 3), all but one received standard colistin-based combination therapy. Phylogenetic analysis revealed the polyclonal spread of carbapenemase-producing K. pneumoniae (CPKP) within the patient population, with the following two major subclades identified: ST16 (n = 15) and ST231 (n = 14). CPKP-ST231 had the highest virulence score of 4 and was associated with primary bacteraemia. The siderophores yersiniabactin and aerobactin, considered to be important virulence factors, were only identified in the CPKP-ST231 genomes. CONCLUSIONS: This study has revealed the genomic features of colonising CPE isolates, focusing on antimicrobial resistance and virulence determinants. This type of multi-layered analysis can be further exploited in Thailand and elsewhere to modify the regimes used for empirical antibiotic treatment and improve the management strategies for CPE infections in hospitalised patients.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/genética , Klebsiella pneumoniae/aislamiento & purificación , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , beta-Lactamasas/aislamiento & purificación , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Colistina/farmacología , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Plásmidos , Tailandia/epidemiología , Factores de Virulencia , beta-Lactamasas/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-32152078

RESUMEN

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Metiltransferasas/genética , Sisomicina/análogos & derivados , Adulto , Anciano , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Femenino , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Sisomicina/farmacología , Estados Unidos , beta-Lactamasas/metabolismo
7.
J Antimicrob Chemother ; 75(10): 2760-2768, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32681170

RESUMEN

OBJECTIVES: To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS: Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS: Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8 kb, bounded by IS26 at both ends, and embedded in a new target location between an α/ß-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS: A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Integrones , Islas , Tipificación de Secuencias Multilocus
8.
Bioinformatics ; 35(6): 1049-1050, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30165579

RESUMEN

SUMMARY: The JCVI pan-genome pipeline is a collection of programs to run PanOCT and tools that support and extend the capabilities of PanOCT. PanOCT (pan-genome ortholog clustering tool) is a tool for pan-genome analysis of closely related prokaryotic species or strains. The JCVI Pan-Genome Pipeline wrapper invokes command-line utilities that prepare input genomes, invoke third-party tools such as NCBI Blast+, run PanOCT, generate a consensus pan-genome, annotate features of the pan-genome, detect sets of genes of interest such as antimicrobial resistance (AMR) genes and generate figures, tables and html pages to visualize the results. The pipeline can run in a hierarchical mode, lowering the RAM and compute resources used. AVAILABILITY AND IMPLEMENTATION: Source code, demo data, and detailed documentation are freely available at https://github.com/JCVenterInstitute/PanGenomePipeline.


Asunto(s)
Genoma Bacteriano , Genoma Microbiano , Análisis por Conglomerados , Células Procariotas , Programas Informáticos
9.
Bioinformatics ; 34(17): 3032-3034, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668840

RESUMEN

Motivation: The vast number of available sequenced bacterial genomes occasionally exceeds the facilities of comparative genomic methods or is dominated by a single outbreak strain, and thus a diverse and representative subset is required. Generation of the reduced subset currently requires a priori supervised clustering and sequence-only selection of medoid genomic sequences, independent of any additional genome metrics or strain attributes. Results: The Gaussian Genome Representative Selector with Prioritization (GGRaSP) R-package described below generates a reduced subset of genomes that prioritizes maintaining genomes of interest to the user as well as minimizing the loss of genetic variation. The package also allows for unsupervised clustering by modeling the genomic relationships using a Gaussian mixture model to select an appropriate cluster threshold. We demonstrate the capabilities of GGRaSP by generating a reduced list of 315 genomes from a genomic dataset of 4600 Escherichia coli genomes, prioritizing selection by type strain and by genome completeness. Availability and implementaion: GGRaSP is available at https://github.com/JCVenterInstitute/ggrasp/. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Análisis por Conglomerados , Genómica/métodos , Distribución Normal , Programas Informáticos
10.
BMC Bioinformatics ; 19(1): 246, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945570

RESUMEN

BACKGROUND: Bacterial pan-genomes, comprised of conserved and variable genes across multiple sequenced bacterial genomes, allow for identification of genomic regions that are phylogenetically discriminating or functionally important. Pan-genomes consist of large amounts of data, which can restrict researchers ability to locate and analyze these regions. Multiple software packages are available to visualize pan-genomes, but currently their ability to address these concerns are limited by using only pre-computed data sets, prioritizing core over variable gene clusters, or by not accounting for pan-chromosome positioning in the viewer. RESULTS: We introduce PanACEA (Pan-genome Atlas with Chromosome Explorer and Analyzer), which utilizes locally-computed interactive web-pages to view ordered pan-genome data. It consists of multi-tiered, hierarchical display pages that extend from pan-chromosomes to both core and variable regions to single genes. Regions and genes are functionally annotated to allow for rapid searching and visual identification of regions of interest with the option that user-supplied genomic phylogenies and metadata can be incorporated. PanACEA's memory and time requirements are within the capacities of standard laptops. The capability of PanACEA as a research tool is demonstrated by highlighting a variable region important in differentiating strains of Enterobacter hormaechei. CONCLUSIONS: PanACEA can rapidly translate the results of pan-chromosome programs into an intuitive and interactive visual representation. It will empower researchers to visually explore and identify regions of the pan-chromosome that are most biologically interesting, and to obtain publication quality images of these regions.


Asunto(s)
Cromosomas/genética , Biología Computacional/métodos , Genómica/métodos , Humanos
11.
Bioinformatics ; 33(11): 1725-1726, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130240

RESUMEN

SUMMARY: LOCUST is a custom sequence locus typer tool for classifying microbial genomes. It provides a fully automated opportunity to customize the classification of genome-wide nucleotide variant data most relevant to biological research. AVAILABILITY AND IMPLEMENTATION: Source code, demo data, and detailed documentation are freely available at http://sourceforge.net/projects/locustyper . CONTACT: lbrinkac@jcvi.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacterias/clasificación , Genoma Bacteriano , Tipificación Molecular/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Bacterias/genética , Genómica/métodos
12.
Microb Ecol ; 74(4): 1001-1008, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492988

RESUMEN

Ubiquitous in nature, antimicrobial resistance (AMR) has existed long before the golden age of antimicrobials. While antimicrobial agents are beneficial to combat infection, their widespread use contributes to the increase in and emergence of novel resistant microbes in virtually all environmental niches. The human microbiome is an important reservoir of AMR with initial exposure occurring in early life. Once seeded with AMR, commensal organisms may be key contributors to the dissemination of resistance due to the interconnectedness of microbial communities. When acquired by pathogens however, AMR becomes a serious public health threat worldwide. Our ability to combat the threat of emerging resistance relies on accurate AMR detection methods and the development of therapeutics that function despite the presence of antimicrobial resistance.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Microbiana , Microbiota/efectos de los fármacos , Humanos
13.
BMC Genomics ; 17(1): 767, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27716057

RESUMEN

BACKGROUND: The genus Bordetella consists of nine species that include important respiratory pathogens such as the 'classical' species B. bronchiseptica, B. pertussis and B. parapertussis and six more distantly related and less extensively studied species. Here we analyze sequence diversity and gene content of 128 genome sequences from all nine species with focus on the evolution of virulence-associated factors. RESULTS: Both genome-wide sequence-based and gene content-based phylogenetic trees divide the genus into three species clades. The phylogenies are congruent between species suggesting genus-wide co-evolution of sequence diversity and gene content, but less correlated within species, mainly because of strain-specific presence of many different prophages. We compared the genomes with focus on virulence-associated genes and identified multiple clade-specific, species-specific and strain-specific events of gene acquisition and gene loss, including genes encoding O-antigens, protein secretion systems and bacterial toxins. Gene loss was more frequent than gene gain throughout the evolution, and loss of hundreds of genes was associated with the origin of several species, including the recently evolved human-restricted B. pertussis and B. holmesii, B. parapertussis and the avian pathogen B. avium. CONCLUSIONS: Acquisition and loss of multiple genes drive the evolution and speciation in the genus Bordetella, including large scale gene loss associated with the origin of several species. Recent loss and functional inactivation of genes, including those encoding pertussis vaccine components and bacterial toxins, in individual strains emphasize ongoing evolution.


Asunto(s)
Bordetella/clasificación , Bordetella/genética , Evolución Molecular , Genoma Bacteriano , Factores de Virulencia/genética , Animales , Sistemas de Secreción Bacterianos/genética , Infecciones por Bordetella/microbiología , Conjuntos de Datos como Asunto , Genes Bacterianos , Variación Genética , Genómica , Genotipo , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple
14.
Plasmid ; 83: 8-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26746359

RESUMEN

The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Plásmidos/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Genes Bacterianos , Genoma Bacteriano , Humanos , Metales Pesados/farmacología , Plásmidos/genética , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/patogenicidad
15.
Int J Syst Evol Microbiol ; 66(12): 5452-5459, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27707434

RESUMEN

Bordetella hinzii is known to cause respiratory disease in poultry and has been associated with a variety of infections in immunocompromised humans. In addition, there are several reports of B. hinzii infections in laboratory-raised mice. Here we sequenced and analysed the complete genome sequences of multiple B. hinzii-like isolates, obtained from vendor-supplied C57BL/6 mice in animal research facilities on different continents, and we determined their taxonomic relationship to other Bordetella species. The whole-genome based and 16S rRNA gene based phylogenies each identified two separate clades in B. hinzii, one was composed of strains isolated from poultry, humans and a rabbit whereas the other clade was restricted to isolates from mice. Distinctly different estimated DNA-DNA hybridization values, average nucleotide identity scores, gene content, metabolic profiles and host specificity all provide compelling evidence for delineation of the two species, B. hinzii - from poultry, humans and rabbit - and Bordetella pseudohinzii sp. nov. type strain 8-296-03T (=NRRL B-59942T=NCTC 13808T) that infect mice.


Asunto(s)
Bordetella/clasificación , Ratones Endogámicos C57BL/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bordetella/genética , Bordetella/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Humanos , Ratones , Hibridación de Ácido Nucleico , Aves de Corral , ARN Ribosómico 16S/genética , Conejos , Análisis de Secuencia de ADN
16.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792073

RESUMEN

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Asunto(s)
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidad Genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Insectos/genética , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/genética , Plantas/microbiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Resorcinoles/metabolismo
17.
Antimicrob Agents Chemother ; 58(8): 4961-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913165

RESUMEN

Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time.


Asunto(s)
Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Plásmidos/química , Polisacáridos Bacterianos/química , Resistencia betalactámica/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana , Carbapenémicos/farmacología , Hospitales , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Medio Oeste de Estados Unidos/epidemiología , Filogenia , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Polisacáridos Bacterianos/metabolismo
18.
Nucleic Acids Res ; 40(22): e172, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22904089

RESUMEN

Pan-genome ortholog clustering tool (PanOCT) is a tool for pan-genomic analysis of closely related prokaryotic species or strains. PanOCT uses conserved gene neighborhood information to separate recently diverged paralogs into orthologous clusters where homology-only clustering methods cannot. The results from PanOCT and three commonly used graph-based ortholog-finding programs were compared using a set of four publicly available strains of the same bacterial species. All four methods agreed on ∼70% of the clusters and ∼86% of the proteins. The clusters that did not agree were inspected for evidence of correctness resulting in 85 high-confidence manually curated clusters that were used to compare all four methods.


Asunto(s)
Proteínas Bacterianas/genética , Genes Bacterianos , Genoma Bacteriano , Programas Informáticos , Bacterias/clasificación , Proteínas Bacterianas/clasificación , Análisis por Conglomerados , Genómica/métodos
19.
Nucleic Acids Res ; 40(Database issue): D237-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22140108

RESUMEN

CharProtDB (http://www.jcvi.org/charprotdb/) is a curated database of biochemically characterized proteins. It provides a source of direct rather than transitive assignments of function, designed to support automated annotation pipelines. The initial data set in CharProtDB was collected through manual literature curation over the years by analysts at the J. Craig Venter Institute (JCVI) [formerly The Institute of Genomic Research (TIGR)] as part of their prokaryotic genome sequencing projects. The CharProtDB has been expanded by import of selected records from publicly available protein collections whose biocuration indicated direct rather than homology-based assignment of function. Annotations in CharProtDB include gene name, symbol and various controlled vocabulary terms, including Gene Ontology terms, Enzyme Commission number and TransportDB accession. Each annotation is referenced with the source; ideally a journal reference, or, if imported and lacking one, the original database source.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Proteínas/química , Proteínas/genética , Proteínas/fisiología
20.
Microorganisms ; 11(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37317139

RESUMEN

Deep sequencing has revealed that the 16S rRNA gene composition of the human microbiome can vary between populations. However, when existing data are insufficient to address the desired study questions due to limited sample sizes, Dirichlet mixture modeling (DMM) can simulate 16S rRNA gene predictions from experimental microbiome data. We examined the extent to which simulated 16S rRNA gene microbiome data can accurately reflect the diversity within that identified from experimental data and calculate the power. Even when experimental and simulated datasets differed by less than 10%, simulation by DMM consistently overestimates power, except when using only highly discriminating taxa. Admixtures of DMM with experimental data performed poorly compared to pure simulation and did not show the same correlation with experimental data p-value and power values. While multiple replications of random sampling remain the favored method of determining the power, when the estimated sample size required to achieve a certain power exceeds the sample number, then simulated samples based on DMM can be used. We introduce an R-Package, MPrESS, to assist in power calculation and sample size estimation for a 16S rRNA gene microbiome dataset to detect a difference between populations. MPrESS can be downloaded from GitHub.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA