Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Funct Ecol ; 33(12): 2402-2416, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31894174

RESUMEN

Current climate warming enables plant species and soil organisms to expand their range to higher latitudes and altitudes. At the same time, climate change increases the incidence of extreme weather events such as drought. While it is expected that plants and soil organisms originating from the south are better able to cope with drought, little is known about the consequences of their range shifts on soil functioning under drought events.Here, we test how range-expanding plant species and soil communities may influence soil functioning under drought. We performed a full-factorial outdoor mesocosm experiment with plant communities of range expanders or related natives, with soil inocula from the novel or the original range, with or without summer drought. We measured litter decomposition, carbon mineralization and enzyme activities, substrate-induced respiration and the relative abundance of soil saprophytic fungi immediately after drought and at 6 and 12 weeks after rewetting.Drought decreased all soil functions regardless of plant and soil origin except one; soil respiration was less reduced in soils of range-expanding plant communities, suggesting stronger resistance to drought. After rewetting, soil functioning responses depended on plant and soil origin. Soils of native plant communities with a history of drought had more litter mass loss and higher relative abundance of saprophytic fungi than soils without drought and soils of range expanders. Functions of soil from range expanders recovered in a more conservative manner than soils of natives, as litter mass loss did not exceed the control rates. At the end of the experiment, after rewetting, most soil functions in mesocosms with drought history did not differ anymore from the control.We conclude that functional consequences of range-expanding plants and soil biota may interact with effects of drought and that these effects are most prominent during the first weeks after rewetting of the soil. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13453/suppinfo can be found within the Supporting Information of this article.

2.
AoB Plants ; 9(5): plx038, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28948010

RESUMEN

It is increasingly acknowledged that soil biota may influence interactions among plant species; however, little is known about how to change historical influences of previous land management on soil biota, the so-called 'biotic soil legacy effect'. We used a two-phase plant community-soil feedback approach to study how plant species typical to original (i.e. undisturbed) and degraded fen meadows may influence effects of the soil community on Carex species that are dominant in fen meadows. In phase 1, soil from original, degraded, successfully and unsuccessfully restored fen meadows was conditioned by growing plants typical to original or to degraded fen meadows. In phase 2, interactions between Carex and neighbouring plant species were studied to quantify plant community-soil feedback effects in different neighbour plant mixtures. Soil conditioning with plants typical to original fen meadows resulted in significantly more Carex biomass than with plants typical to degraded fen meadows. These effects were strongest when the soil originated from unsuccessfully restored fen meadows. However, biomass of plants typical of degraded fen meadows was also higher in soil conditioned by typical fen meadow plants. We conclude that soil legacy effects of plants from degraded fen meadows can be altered by growing typical fen meadow plant species in that soil, as this enhances priority effects that favour growth of other typical fen meadow plants. As also plant species from degraded fen meadows benefitted from soil conditioning, further studies are needed to reveal if plant species can be chosen that change negative soil legacy effects for rare and endangered fen meadow plant species, but not for plant species that are typical to degraded fen meadows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA