RESUMEN
INTRODUCTION: Late-onset Alzheimer's disease (LOAD) is a complex neurodegenerative disease characterized by multiple progressive stages, glucose metabolic dysregulation, Alzheimer's disease (AD) pathology, and inexorable cognitive decline. Discovery of metabolic profiles unique to sex, apolipoprotein E (APOE) genotype, and stage of disease progression could provide critical insights for personalized LOAD medicine. METHODS: Sex- and APOE-specific metabolic networks were constructed based on changes in 127 metabolites of 656 serum samples from the Alzheimer's Disease Neuroimaging Initiative cohort. RESULTS: Application of an advanced analytical platform identified metabolic drivers and signatures clustered with sex and/or APOE É4, establishing patient-specific biomarkers predictive of disease state that significantly associated with cognitive function. Presence of the APOE É4 shifts metabolic signatures to a phosphatidylcholine-focused profile overriding sex-specific differences in serum metabolites of AD patients. DISCUSSION: These findings provide an initial but critical step in developing a diagnostic platform for personalized medicine by integrating metabolomic profiling and cognitive assessments to identify targeted precision therapeutics for AD patient subgroups through computational network modeling.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/patología , Medicina de Precisión , Enfermedades Neurodegenerativas/complicaciones , Genotipo , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Redes y Vías MetabólicasRESUMEN
Clinicians can encounter sex and gender disparities in diagnostic and therapeutic responses. These disparities are noted in epidemiology, pathophysiology, clinical manifestations, disease progression, and response to treatment. This Review discusses the fundamental influences of sex and gender as modifiers of the major causes of death and morbidity. We articulate how the genetic, epigenetic, and hormonal influences of biological sex influence physiology and disease, and how the social constructs of gender affect the behaviour of the community, clinicians, and patients in the health-care system and interact with pathobiology. We aim to guide clinicians and researchers to consider sex and gender in their approach to diagnosis, prevention, and treatment of diseases as a necessary and fundamental step towards precision medicine, which will benefit men's and women's health.
Asunto(s)
Causas de Muerte , Estado de Salud , Medicina de Precisión/normas , Distribución por Sexo , Enfermedad Aguda/epidemiología , Betacoronavirus , COVID-19 , Enfermedad Crónica/epidemiología , Infecciones por Coronavirus/epidemiología , Femenino , Humanos , Masculino , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Caracteres Sexuales , Factores SexualesRESUMEN
Astrocytes provide key neuronal support, and their phenotypic transformation is implicated in neurodegenerative diseases. Metabolically, astrocytes possess low mitochondrial oxidative phosphorylation (OxPhos) activity, but its pathophysiological role in neurodegeneration remains unclear. Here, we show that the brain critically depends on astrocytic OxPhos to degrade fatty acids (FAs) and maintain lipid homeostasis. Aberrant astrocytic OxPhos induces lipid droplet (LD) accumulation followed by neurodegeneration that recapitulates key features of Alzheimer's disease (AD), including synaptic loss, neuroinflammation, demyelination and cognitive impairment. Mechanistically, when FA load overwhelms astrocytic OxPhos capacity, elevated acetyl-CoA levels induce astrocyte reactivity by enhancing STAT3 acetylation and activation. Intercellularly, lipid-laden reactive astrocytes stimulate neuronal FA oxidation and oxidative stress, activate microglia through IL-3 signalling, and inhibit the biosynthesis of FAs and phospholipids required for myelin replenishment. Along with LD accumulation and impaired FA degradation manifested in an AD mouse model, we reveal a lipid-centric, AD-resembling mechanism by which astrocytic mitochondrial dysfunction progressively induces neuroinflammation and neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neuroinflamatorias , Ratones , Animales , Astrocitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismoRESUMEN
Chronic stress has been proposed as a driver of altered brain structure and function, including the pathogenesis of neurodegenerative diseases and a driver of disease progression. A key outcome of stress in the brain is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicate failed resilience. Neuroendocrine homeostasis and stress response are mainly dependent upon the functioning of the hypothalamic-pituitary-adrenal axis. Neurosteroids will fluctuate depending on whether the stress is acute or chronic. Advancements in neurosteroid research have led to the identification of multiple targets for drug development, but the most promising innovative target may be neurogenesis, given its potential impact in neurodegenerative disorders like Alzheimer's disease. Allopregnanolone is an endogenous pregnane neurosteroid and a reduced metabolite of progesterone, which acts as a potent allosteric modulator and direct activator of the GABA-chloride channel complex. Perhaps the most intriguing finding related to the potential therapeutic effects of allopregnanolone is its potential to promote neuroregeneration.
RESUMEN
Neurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Enfermedad de Alzheimer/prevención & control , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Cuerpos Cetónicos , MasculinoRESUMEN
Context: Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective: Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants: We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention: Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures: Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results: No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions: These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration: ClinicalTrials.gov-NCT04796207.
RESUMEN
Introduction: Allopregnanolone (ALLO), an endogenous neurosteroid, promoted neurogenesis and oligogenesis and restored cognitive function in animal models of Alzheimer's disease (AD). Based on these discovery research findings, we conducted a randomized-controlled phase 1b/2a multiple ascending dose trial of ALLO in persons with early AD (NCT02221622) to assess safety, tolerability, and pharmacokinetics. Exploratory imaging outcomes to determine whether ALLO impacted hippocampal structure, white matter integrity, and functional connectivity are reported. Methods: Twenty-four individuals participated in the trial (n = 6 placebo; n = 18 ALLO) and underwent brain magnetic resonance imaging (MRI) before and after 12 weeks of treatment. Hippocampal atrophy rate was determined from volumetric MRI, computed as rate of change, and qualitatively assessed between ALLO and placebo sex, apolipoprotein E (APOE) ε4 allele, and ALLO dose subgroups. White matter microstructural integrity was compared between placebo and ALLO using fractional and quantitative anisotropy (QA). Changes in local, inter-regional, and network-level functional connectivity were also compared between groups using resting-state functional MRI. Results: Rate of decline in hippocampal volume was slowed, and in some cases reversed, in the ALLO group compared to placebo. Gain of hippocampal volume was evident in APOE ε4 carriers (range: 0.6% to 7.8% increased hippocampal volume). Multiple measures of white matter integrity indicated evidence of preserved or improved integrity. ALLO significantly increased fractional anisotropy (FA) in 690 of 690 and QA in 1416 of 1888 fiber tracts, located primarily in the corpus callosum, bilateral thalamic radiations, and bilateral corticospinal tracts. Consistent with structural changes, ALLO strengthened local, inter-regional, and network level functional connectivity in AD-vulnerable regions, including the precuneus and posterior cingulate, and network connections between the default mode network and limbic system. Discussion: Indicators of regeneration from previous preclinical studies and these exploratory MRI-based outcomes from this phase 1b/2a clinical cohort support advancement to a phase 2 proof-of-concept efficacy clinical trial of ALLO as a regenerative therapeutic for mild AD (REGEN-BRAIN study; NCT04838301).
RESUMEN
There are limited studies on neuroprotection from repeated subconcussive head impacts (RSHI) following docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) supplementation in contact sports athletes. We performed a randomized, placebo-controlled, double-blinded, parallel-group design trial to determine the impact of 26 weeks of DHA+EPA supplementation (n = 12) vs. placebo (high-oleic safflower oil) (n = 17) on serum concentrations of neurofilament light (NfL), a biomarker of axonal injury, and inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a)) in National Collegiate Athletic Association Division I American football athletes. DHA+EPA supplementation increased (p < 0.01) plasma DHA and EPA concentrations throughout the treatment period. NfL concentrations increased from baseline to week 26 in both groups (treatment (<0.001); placebo (p < 0.05)), with starting players (vs. non-starters) showing significant higher circulating concentrations at week 26 (p < 0.01). Fish oil (DHA+EPA) supplementation did not mitigate the adverse effects of RSHI, as measured by NfL levels; however, participants with the highest plasma DHA+EPA concentrations tended to have lower NfL levels. DHA+EPA supplementation had no effects on inflammatory cytokine levels at any of the timepoints tested. These findings emphasize the need for effective strategies to protect American football participants from the effects of RSHI.
Asunto(s)
Aceites de Pescado , Fútbol Americano , Biomarcadores , Citocinas , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Método Doble Ciego , Ácido Eicosapentaenoico , Humanos , InflamaciónRESUMEN
Aging and endocrine transition states can significantly impact inflammation across organ systems. Neuroinflammation is well documented in Alzheimer disease (AD). Herein, we investigated neuroinflammation that emerges during mid-life aging, chronological and endocrinological, in the female brain as an early initiating mechanism driving AD risk later in life. Analyses were conducted in a translational rodent model of mid-life chronological and endocrinological aging followed by validation in transcriptomic profiles from women versus age-matched men. In the translational model, the neuroinflammatory profile of mid-life aging in females was endocrine and chronological state specific, dynamic, anatomically distributed, and persistent. Microarray dataset analyses of aging human hippocampus indicated a sex difference in neuroinflammatory profile in which women exhibited a profile comparable to the pattern discovered in our translational rodent model, whereas age-matched men exhibited a profile consistent with low neuroimmune activation. Translationally, these findings have implications for therapeutic interventions during mid-life to decrease late-onset AD risk.
RESUMEN
OBJECTIVE: PhytoSERM is a selective estrogen receptor beta (ERß) modulator comprised of three phytoestrogens: genistein, daidzein, and S-equol. The PhytoSERM formulation promotes estrogenic action in the brain while largely inactive or inhibitory in reproductive tissue. A phase Ib/IIa clinical trial (ClinicalTrial.gov ID: NCT01723917) of PhytoSERM demonstrated safety and pharmacokinetics profile of PhytoSERM. While this study was not powered for efficacy analysis, we conducted a pilot, retrospective analysis to identify potential responders to PhytoSERM treatment, and to determine the optimal populations to pursue in a phase II clinical trial of efficacy of the PhytoSERM formulation. METHODS: In this retrospective analysis involving 46 participants (nâ=â16, placebo; nâ=â18, 50âmg/d PhytoSERM; and nâ=â12, 100âmg/d PhytoSERM), the therapeutic effect of PhytoSERM was stratified by 2 genetic risk modulators for Alzheimer's disease: mitochondrial haplogroup and APOE genotype. RESULTS: Our retrospective responder analysis indicated that participants on 50âmg of daily PhytoSERM (PS50) for 12 weeks significantly reduced hot flash frequency compared with their baseline (mean [95% CI])-1.61, [-2.79, -0.42], Pâ=â0.007). Participants on 50âmg of PhytoSERM also had significantly greater reduction in hot flash frequency at 12 weeks compared with the placebo group (-1.38, -0.17 [median PS50, median placebo], Pâ=â0.04). Fifty milligrams of daily PhytoSERM also preserved cognitive function in certain aspects of verbal learning and executive function. Our analysis further suggests that mitochondrial haplogroup and APOE genotype can modify PhytoSERM response. CONCLUSION: Our data support a precision medicine approach for further development of PhytoSERM as a safe and effective alternative to hormone therapy for menopause-associated hot flash and cognitive decline. While definitive determination of PhytoSERM efficacy is limited by the small sample size, these data provide a reasonable rationale to extend analyses to a larger study set powered to address statistical significance.
Asunto(s)
Apolipoproteínas E/genética , Disfunción Cognitiva/tratamiento farmacológico , Equol/administración & dosificación , Genisteína/administración & dosificación , Haplotipos , Sofocos/tratamiento farmacológico , Isoflavonas/administración & dosificación , Menopausia , Mitocondrias/genética , Fitoestrógenos/administración & dosificación , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Cognición/efectos de los fármacos , Disfunción Cognitiva/genética , Método Doble Ciego , Equol/efectos adversos , Estudios de Factibilidad , Femenino , Genisteína/efectos adversos , Sofocos/genética , Humanos , Isoflavonas/efectos adversos , Persona de Mediana Edad , Fitoestrógenos/efectos adversos , Proyectos Piloto , Estudios Retrospectivos , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos , Resultado del TratamientoRESUMEN
OBJECTIVE: Vasomotor flushing (hot flushes) is a common menopausal symptom experienced by most women going through the menopausal transition; flushing continues for a variable period in postmenopause. Primarily due to lack of ovarian estrogen, other biomarkers of hot flushes have not been clearly identified. We examined the relationship of hot flushes with ghrelin and adipokines. METHODS: Baseline data from two clinical trials, the Women's Isoflavone Soy Health (WISH) trial and Early versus Late Intervention Trial of Estrogen (ELITE), were used in this post hoc cross-sectional study. Both WISH and ELITE had similar study designs, inclusion criteria, and data collection processes. Study participants were healthy postmenopausal women not taking estrogen-based hormone therapy, free of cardiovascular disease, or any other chronic diseases. Both trials used the same hot flush diary in which participants recorded the number of daily hot flushes by severity over a month on average. Serum concentrations of ghrelin, leptin, adiponectin, and resistin were assessed in stored fasting blood samples using highly specific radioimmunoassay. In this analysis, self-reported flushing experience was tested for an association with leptin, adiponectin, resistin, and ghrelin concentrations using logistic regression and mean comparisons. RESULTS: A total of 898 postmenopausal women from the ELITE and WISH trials contributed to this analysis. Mean (SD) age was 60.4 (7.0) years, body mass index (BMI) 27 (5.3) kg/m, 67% were white, and 47% were within 10 years of menopause. Reported flushing was significantly associated with younger age, lower education, lower BMI, being married, and more recent menopause. Adjusted for these factors other than BMI, women in the highest quartile of ghrelin had significantly greater likelihood of experiencing hot flushes (OR [95% CI] = 1.84 [1.21-2.85]) compared to women in the lowest quartile. The association was more pronounced among overweight or obese women (OR [95% CI] = 2.36 [1.28-4.35]) compared to those with normal BMI (1.24 [0.54, 2.86]; interaction P value = 0.46). The association between ghrelin and hot flushes was similar among early (within 10 y) and late (over 10 y) postmenopausal women. Blood levels of adiponectin and resistin were not associated with hot flushes. CONCLUSIONS: Higher concentrations of ghrelin were associated with greater likelihood of hot flushes in both early- and late-postmenopausal women. Leptin, adiponectin, and resistin levels were not associated with hot flushes in postmenopausal women.
Asunto(s)
Ghrelina , Posmenopausia , Adipoquinas , Estudios Transversales , Femenino , Sofocos , Humanos , Persona de Mediana EdadRESUMEN
For decades, Alzheimer's disease research has focused on amyloid as the primary pathogenic agent. This focus has driven the development of numerous amyloid-targeting therapies; however, with one possible exception, none of these therapies have been effective in preventing or delaying cognitive decline in patients, and there are no approved disease-modifying agents. It is becoming more apparent that alternative drug targets are needed to address this complex disease. An increased understanding of Alzheimer's disease pathology has highlighted the need to target the appropriate disease pathology at the appropriate time in the disease course. Preclinical and early clinical studies have focused on targets, including inflammation, tau, vascular health, and the microbiome. This report summarizes the presentations from a New York Academy of Sciences' one-day symposium entitled "Alzheimer's Disease Therapeutics: Alternatives to Amyloid," held on November 20, 2019.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/antagonistas & inhibidores , Terapia Molecular Dirigida , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/microbiología , Epigénesis Genética , Humanos , Microbiota , Microglía/patología , Regeneración Nerviosa , Proteínas tau/metabolismoRESUMEN
Late onset Alzheimer's disease (LOAD) is a progressive neurodegenerative disease with four well-established risk factors: age, APOE4 genotype, female chromosomal sex, and maternal history of AD. Each risk factor impacts multiple systems, making LOAD a complex systems biology challenge. To investigate interactions between LOAD risk factors, we performed multiple scale analyses, including metabolomics, transcriptomics, brain magnetic resonance imaging (MRI), and beta-amyloid assessment, in 16 months old male and female mice with humanized human APOE3 (hAPOE3) or APOE4 (hAPOE4) genes. Metabolomic analyses indicated a sex difference in plasma profile whereas APOE genotype determined brain metabolic profile. Consistent with the brain metabolome, gene and pathway-based RNA-Seq analyses of the hippocampus indicated increased expression of fatty acid/lipid metabolism related genes and pathways in both hAPOE4 males and females. Further, female transcription of fatty acid and amino acids pathways were significantly different from males. MRI based imaging analyses indicated that in multiple white matter tracts, hAPOE4 males and females exhibited lower fractional anisotropy than their hAPOE3 counterparts, suggesting a lower level of white matter integrity in hAPOE4 mice. Consistent with the brain metabolomic and transcriptomic profile of hAPOE4 carriers, beta-amyloid generation was detectable in 16-month-old male and female brains. These data provide therapeutic targets based on chromosomal sex and APOE genotype. Collectively, these data provide a framework for developing precision medicine interventions during the prodromal phase of LOAD, when the potential to reverse, prevent and delay LOAD progression is greatest.
Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Edad de Inicio , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Metaboloma/genética , Ratones , Ratones Transgénicos , Caracteres Sexuales , Cromosomas Sexuales/genética , Cromosomas Sexuales/metabolismoRESUMEN
INTRODUCTION: Allopregnanolone is an endogenous neurosteroid with the potential to be a novel regenerative therapeutic for Alzheimer's disease (AD). Foundations of mechanistic understanding and well-established preclinical safety efficacy make it a viable candidate. METHODS: A randomized, double-blinded, placebo-controlled, single and multiple ascending dose trial was conducted. Intravenous allopregnanolone or placebo was administered once-per-week for 12 weeks with a 1-month follow-up. Participants with early AD (mild cognitive impairment due to AD or mild AD), a Mini-Mental State Examination score of 20-26 inclusive, and age ≥55 years were randomized (6:2 to three allopregnanolone dosing cohorts or one placebo cohort). Primary endpoint was safety and tolerability. Secondary endpoints included pharmacokinetic (PK) parameters and maximally tolerated dose (MTD). Exploratory endpoints included cognitive and imaging biomarkers. RESULTS: A total of 24 participants completed the trial. Allopregnanolone was safe and well tolerated in all study participants. No differences were observed between treatment arms in the occurrence and severity of adverse events (AE). Most common AE were mild to moderate in severity and included rash (n = 4 [22%]) and fatigue (n = 3 [17%]). A single non-serious AE, dizziness, was attributable to treatment. There was one serious AE not related to treatment. Pharmacokinetics indicated a predictable linear dose-response in plasma concentration of allopregnanolone after intravenous administration over 30 minutes. The maximum plasma concentrations for the 2 mg, 4 mg, 6 mg, and 10 mg dosages were 14.53 ng/mL (+/-7.31), 42.05 ng/mL (+/-14.55), 60.07 ng/mL (+/-12.8), and 137.48 ng/mL (+/-38.69), respectively. The MTD was established based on evidence of allopregnanolone-induced mild sedation at the highest doses; a sex difference in the threshold for sedation was observed (males 10 mg; females 14 mg). No adverse outcomes on cognition or magnetic resonance imaging-based imaging outcomes were evident. CONCLUSIONS: Allopregnanolone was well tolerated and safe across all doses in persons with early AD. Safety, MTD, and PK profiles support advancement of allopregnanolone as a regenerative therapeutic for AD to a phase 2 efficacy trial. TRIAL REGISTRATION: ClinicalTrials.gov-NCT02221622.
RESUMEN
OBJECTIVE: To investigate sex differences in late-onset Alzheimer disease (AD) risks by means of multimodality brain biomarkers (ß-amyloid load via 11C-Pittsburgh compound B [PiB] PET, neurodegeneration via 18F-fluorodeoxyglucose [FDG] PET and structural MRI). METHODS: We examined 121 cognitively normal participants (85 women and 36 men) 40 to 65 years of age with clinical, laboratory, neuropsychological, lifestyle, MRI, FDG- and PiB-PET examinations. Several clinical (e.g., age, education, APOE status, family history), medical (e.g., depression, diabetes mellitus, hyperlipidemia), hormonal (e.g., thyroid disease, menopause), and lifestyle AD risk factors (e.g., smoking, diet, exercise, intellectual activity) were assessed. Statistical parametric mapping and least absolute shrinkage and selection operator regressions were used to compare AD biomarkers between men and women and to identify the risk factors associated with sex-related differences. RESULTS: Groups were comparable on clinical and cognitive measures. After adjustment for each modality-specific confounders, the female group showed higher PiB ß-amyloid deposition, lower FDG glucose metabolism, and lower MRI gray and white matter volumes compared to the male group (p < 0.05, family-wise error corrected for multiple comparisons). The male group did not show biomarker abnormalities compared to the female group. Results were independent of age and remained significant with the use of age-matched groups. Second to female sex, menopausal status was the predictor most consistently and strongly associated with the observed brain biomarker differences, followed by hormone therapy, hysterectomy status, and thyroid disease. CONCLUSION: Hormonal risk factors, in particular menopause, predict AD endophenotype in middle-aged women. These findings suggest that the window of opportunity for AD preventive interventions in women is early in the endocrine aging process.
Asunto(s)
Enfermedad de Alzheimer/epidemiología , Imagen Multimodal , Neuroimagen , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Compuestos de Anilina , Apolipoproteínas E/genética , Femenino , Fluorodesoxiglucosa F18 , Hormonas/sangre , Humanos , Estilo de Vida , Imagen por Resonancia Magnética , Masculino , Menopausia/psicología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Radiofármacos , Factores de Riesgo , Factores Sexuales , TiazolesRESUMEN
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Metabolismo Energético/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Animales , Glucólisis/fisiología , Humanos , Fosforilación OxidativaRESUMEN
Late-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.
Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Sangre/metabolismo , Metaboloma/genética , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Tomografía de Emisión de Positrones , Factores SexualesRESUMEN
OBJECTIVE: We hypothesized the association of metabolic profile on cognition in postmenopausal women will be greater among ApoE4 carriers compared with noncarriers. METHODS: Metabolic biomarkers and measures of global cognition, executive functions, and verbal memory, collected among postmenopausal females, were used in this analysis. Clustering analyses of metabolic biomarkers revealed three phenotypes: healthy, predominantly hypertensive, and poor metabolic with (borderline normal laboratory values). General linear models tested whether an association of metabolic cluster with cognition differed by ApoE4 genotype. RESULTS: In the total sample of 497 women, verbal memory was lower in the poor metabolic cluster (Pâ=â0.04). Among ApoE4+ women, performance in all cognitive domains was lowest in the poor metabolic cluster. Differences in executive functions among metabolic clusters were detected only in ApoE4+ women (P value for interactionâ=â0.003). CONCLUSIONS: In a general population of postmenopausal women, association between poor metabolic profile with reduction in cognitive performance is more apparent in women who carry an ApoE4 allele. These data indicate a window of opportunity for interventions to reverse the trajectory of the preclinical phase of Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Cognición/fisiología , Predisposición Genética a la Enfermedad , Metaboloma/fisiología , Posmenopausia/genética , Anciano , Alelos , Enfermedad de Alzheimer/prevención & control , Biomarcadores/sangre , Método Doble Ciego , Función Ejecutiva , Femenino , Heterocigoto , Humanos , Memoria , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fenotipo , Posmenopausia/sangre , Riesgo , Salud de la MujerRESUMEN
OBJECTIVE: PhytoSERM is a formulation of genistein, daidzein, and S-equol that has an 83-fold selective affinity for estrogen receptor-ß (ERß); and may enhance neuron function and estrogenic mechanisms in the brain without having peripheral estrogenic activity. METHODS: We conducted an overarching, two-stage, dose-ranging, double-blinded, randomized, placebo-controlled trial of 12 weeks duration comparing 50 and 100âmg/d of phytoSERM with placebo for noncognitively impaired, perimenopausal women aged 45 to 60, with intact uteri and ovaries, with at least one cognitive complaint, and one vasomotor-related symptom. Primary objectives were to assess safety and tolerability of a 50 and 100âmg daily dose; and, secondly, to evaluate potential indicators of efficacy on cognition and vasomotor symptoms over 4 and 12 weeks, and using an embedded, 4-week, 2-period, placebo-controlled crossover trial for a subset of participants. RESULTS: Seventy-one women were randomized to treatment; 70 were evaluated at 4 weeks; 12 were entered into the crossover study; 5 did not complete 12 weeks. Reasons for discontinuation were withdrawal of consent (nâ=â1) and lost to follow-up (nâ=â4). Adverse events occurred in 16.7% (nâ=â4) placebo, 39.1% (nâ=â9) 50âmg/d, and 29.2% (nâ=â7) 100âmg/d treated participants; 85% were mild and none was severe. Vaginal bleeding occurred in 0, placebo; 1, 50âmg; and 3, 100âmg/d participants. CONCLUSIONS: The phytoSERM formulation was well tolerated at 50 and 100âmg daily doses. Based on safety outcomes, vaginal bleeding at the 100âmg dose, and vasomotor symptoms and cognitive outcomes at 12 weeks, a daily dose of 50âmg was considered preferable for a phase 2 efficacy trial.
Asunto(s)
Cognición/efectos de los fármacos , Equol/administración & dosificación , Receptor beta de Estrógeno/efectos de los fármacos , Genisteína/administración & dosificación , Isoflavonas/administración & dosificación , Perimenopausia/efectos de los fármacos , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Quimioterapia Combinada , Equol/farmacocinética , Receptor beta de Estrógeno/metabolismo , Femenino , Genisteína/farmacocinética , Sofocos/tratamiento farmacológico , Humanos , Isoflavonas/farmacocinética , Persona de Mediana EdadRESUMEN
Neuro-inflammatory processes that contribute to development of Alzheimer's are evident early in the latent prodromal phase and worsen during the course of the disease. Despite substantial mechanistic and clinical evidence of inflammation, therapeutic approaches targeting inflammation have failed to alter the course of the disease. Disparate results from epidemiological and clinical trials targeting inflammation, highlight the complexity of the inflammatory process. Herein we review the dynamics of the inflammatory process across aging, midlife endocrine transitions, and the APOEε4 genotype and their contribution to progression of Alzheimer's disease (AD). We discuss the chronic inflammatory processes that are activated during midlife chronological and endocrine aging, which ultimately limit the clearance capacity of microglia and lead to immune senescence. Aging, menopause, and APOEε4 combine the three hits of a compromised bioenergetic system of menopause with the chronic low grade innate inflammation of aging with the APOEε4 dyslipidemia and adaptive immune response. The inflammatory immune response is the unifying factor that bridges across each of the risk factors for AD. Immune system regulators that are specific to stage of disease and inflammatory phenotype would provide a therapeutic strategy to disconnect the bridge that drives disease. Outcomes of this analysis provide plausible mechanisms underlying failed clinical trials of anti-inflammatory agents in Alzheimer's patients. Further, they highlight the need for stratifying AD clinical trial cohorts based on inflammatory phenotype. Combination therapies that include targeted use of anti-inflammatory agent's specific to the immune phenotype are considered.