Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1147, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307570

RESUMEN

Protein degradation mediated by the ubiquitin-proteasome pathway regulates signaling events in many physiological and pathological conditions. In vitro degradation assays have been instrumental in the understanding of how cell proliferation and other fundamental cellular processes are regulated. These assays are direct, time-specific and highly informative but also laborious, typically relying on low-throughput polyacrylamide gel-electrophoresis followed by autoradiography or immunoblotting. We present protein degradation on chip (pDOC), a MITOMI-based integrated microfluidic technology for discovery and analysis of proteins degradation in cell-free extracts. The platform accommodates hundreds of microchambers on which protein degradation is assayed quickly, simultaneously and using minute amounts of reagents in one or many physiochemical environments. Essentially, pDOC provides a sensitive multiplex alternative to the conventional degradation assay, with relevance to biomedical and translational research associated with regulated proteolysis.


Asunto(s)
Microfluídica , Microfluídica/métodos , Proteolisis , Extractos Celulares , Electroforesis en Gel de Poliacrilamida , Immunoblotting
2.
N Biotechnol ; 68: 1-8, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35026470

RESUMEN

RNA guided nucleases are regarded as the future genome editing technologies. As such, they need to meet strong safety margins. Two major challenges in incorporating CRISPR technologies into the clinical world are off-target activity and editing efficiency. The common way to tackle such issues is to measure the binding and cleavage kinetics of the CRISPR enzyme. This can be challenging since, for example, DNA is not released from the CAS9 protein post cleavage. Here a promising new microfluidic approach to characterizing Enzymatic Interaction and Function of CRISPR complexes on a microfluidic platform (EnzyMIF) is presented. The method can rapidly detect the kd, koff, km and kcat for various RNA guided nucleases. In this work, two single guide RNAs with significantly different in-cell cleavage efficiency, RAG2 and RAG1, are used as proof-of-concept. The EnzyMIF assay results provide biochemical characterization of these guide RNAs that can explain the difference in cleavage using both wild type (WT) CAS9 and HiFi CAS9. Notably, it is shown that EnzyMIF characterization correlates with cell culture genomic editing efficiency results. It is suggested that EnzyMIF can predict the quality of cleavage rapidly and quantitatively.


Asunto(s)
Sistemas CRISPR-Cas , Microfluídica , Sistemas CRISPR-Cas/genética , Edición Génica , Genómica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
3.
Commun Biol ; 2: 42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729180

RESUMEN

Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Técnicas Analíticas Microfluídicas/instrumentación , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/metabolismo , Membrana Celular/metabolismo , Biblioteca de Genes , Células HEK293 , Humanos , Fosforilación , Análisis por Matrices de Proteínas , Proteínas Tirosina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA