Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 19(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30200218

RESUMEN

Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the ß-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.


Asunto(s)
Bacterias/clasificación , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Gorgojos/microbiología , Animales , Bacterias/genética , ADN Bacteriano/análisis , Tracto Gastrointestinal/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Redes y Vías Metabólicas , México , Filogenia
2.
Toxicon ; 179: 8-20, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32142716

RESUMEN

Artificial urban lakes commonly have physicochemical conditions that contribute to rapid anthropogenic eutrophication and development of cyanobacterial blooms. Microcystis is the dominat genus in most freshwater bodies and is one of the main producter of microcystins. Using 454-pyrosequencing we characterized the bacterial community, with special emphasis on Microcystis, in three recreational urban lakes from Mexico City in both wet and dry seasons. We also evaluated some physicochemical parameters that might influence the presence of Microcystis blooms, and we associated the relative abundance of heterotrophic and autotrophic bacterial communities with their possible metabolic capacities. A total of 14 phyla, 18 classes, 39 orders, 53 families and 48 bacterial genera were identified in both seasons in the three urban lakes. Cyanobacteria had the highest relative abundance followed by Proteobacteria and Actinobacteria. Microcystis was the dominant taxon followed by Arthrospira, Planktothrix and Synechococcus. We also found heterotrophic bacteria associated with the blooms, such as Rhodobacter, Pseudomonas, Sphingomonas and, Porphyrobacter. The highest richness, diversity and dominance were registered in the bacterial community of the Virgilio Uribe Olympic Rowing-Canoeing Track in both seasons, and the lowest values were found in the Chapultepec Lake. The canonical correspondence analysis showed that dissolved oxygen and NO3-N concentrations might explain the presence of Microcystis blooms. The metabolic prediction indicated that these communities are involved in photosynthesis, oxidative phosphorylation, methane metabolism, carbon fixation, and nitrogen and sulfur metabolism. The lakes studied had a high prevalence of Microcystis, but average values of microcystins did not exceed the maximum permissible level established by the United States Environmental Protection Agency for recreational and cultural activities. The presence of cyanobacteria and microcystins at low to moderate concentrations in the three lakes could result in ecosystem disruption and increase animal and human health risks.


Asunto(s)
Monitoreo del Ambiente , Microcystis/crecimiento & desarrollo , Ecosistema , Eutrofización , Lagos/microbiología , México , Estaciones del Año
3.
Sci Rep ; 7(1): 13864, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066751

RESUMEN

Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in ß-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.


Asunto(s)
Biodiversidad , Evolución Biológica , Microbioma Gastrointestinal , Gorgojos/microbiología , Animales , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
4.
PLoS One ; 12(4): e0175470, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28406998

RESUMEN

Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect's life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in ß-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.


Asunto(s)
Bacterias/metabolismo , Escarabajos/microbiología , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Estadios del Ciclo de Vida/fisiología , Animales , Bacterias/clasificación
5.
Fungal Biol ; 120(9): 1077-89, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27567714

RESUMEN

Bark beetles (Curculionidae: Scolytinae) and associated microorganisms must overcome a complex tree's defence system, which includes toxic monoterpenes, to successfully complete their life cycle. A number of studies have suggested these microorganisms could have ecological roles related with the nutrition, detoxification, and semiochemical production. In particular, in filamentous fungi symbionts, cytochrome P450 (CYP) have been involved with terpenoid detoxification and biotransformation processes. Candida oregonensis has been isolated from the gut, ovaries, and frass of different bark beetle species, and it is a dominant species in the Dendroctonus rhizophagus gut. In this study, we identify, characterise, and infer the phylogenetic relationships of C. oregonensis CYP genes. The results indicate that the cytochrome P450 complement (CYPome) is composed of nine genes (CYP51F1, CYP61A1, CYP56D1, CYP52A59, CYP52A60, CYP52A61, CYP52A62, CYP5217A8, and CYP5217B1), which might participate in primary metabolic reactions such as sterol biosynthesis, biodegradation of xenobiotic, and resistance to environmental stress. The prediction of the cellular location suggests that these CYPs to be anchored to the plasma membrane, membranes of the endoplasmic reticulum, mitochondria, and peroxisomes. These findings lay the foundation for future studies about the functional role of P450s, not only for yeasts, but also for the insects with which they interact.


Asunto(s)
Candida/clasificación , Candida/enzimología , Sistema Enzimático del Citocromo P-450/genética , Filogenia , Gorgojos/microbiología , Animales , Candida/genética , Candida/aislamiento & purificación , Membrana Celular/enzimología , Tracto Gastrointestinal/microbiología , Membranas Intracelulares/enzimología , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA