Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Eye Res ; 207: 108610, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33940009

RESUMEN

Our earlier decorin (Dcn) gene overexpression studies found that the targeted Dcn gene transfer into the cornea inhibited corneal angiogenesis in vivo using a rabbit model. In this study, we tested the hypothesis that anti-angiogenic effects of decorin in the cornea are mediated by alterations in a normal physiologic balance of pro- and anti-angiogenic factors using decorin deficient (Dcn-/-) and wild type (Dcn+/+) mice. Corneal neovascularization (CNV) in Dcn-/- and Dcn+/+ mice was produced with a standard chemical injury technique. The clinical progression of CNV in mice was monitored with stereo- and slit-lamp microscopes, and histopathological hematoxylin and eosin (H&E) staining. Protein and mRNA expression of pro- and anti-angiogenic factors in the cornea were evaluated using immunofluorescence and quantitative real-time PCR, respectively. Slit-lamp clinical eye examinations revealed significantly more CNV in Dcn-/- mice than the Dcn+/+ mice post-injury (p < 0.05) and AAV5-Dcn gene therapy significantly reduced CNV in Dcn-/- mice compered to no AAV5-Dcn gene therapy controls (p < 0.001). H&E-stained corneal sections exhibited morphology with several neovessels in injured corneas of the Dcn-/- mice than the Dcn+/+ mice. Immunofluorescence of corneal sections displayed significantly higher expression of α-smooth muscle actin (α-SMA) and endoglin proteins in Dcn-/- mice than Dcn+/+ mice (p < 0.05). Quantitative real-time PCR found significantly increased mRNA levels of pro-angiogenic factors endoglin (2.53-fold; p < 0.05), Vegf (2.47-fold; p < 0.05), and Pecam (2.14-fold; p < 0.05) and anti-angiogenic factor Vegfr2 (1.56-fold; p < 0.05) in the normal cornea of the Dcn-/- mice than the Dcn+/+ mice. Furthermore, neovascularized Dcn-/- mice corneas showed greater increase in mRNA expression of pro-angiogenic factors endoglin (4.58-fold; p < 0.0001), Vegf (4.16-fold; p < 0.0001), and Pdgf (2.15-fold; p < 0.0001) and reduced expression of anti-angiogenic factors Ang2 (0.12-fold; p < 0.05), Timp1 (0.22-fold; p < 0.05), and Vegfr2 (0.67-fold; p > 0.05) compared to neovascularized Dcn+/+ mice corneas. These gene deficience studies carried with transgenic Dcn-/- mice revealed decorin's role in influencing a physiologic balance between pro-and anti-angiogenic factors in the normal and injured cornea. We infer that the functional deletion of Dcn promotes irregular corneal repair and aggravates CNV.


Asunto(s)
Neovascularización de la Córnea/metabolismo , Neovascularización de la Córnea/fisiopatología , Decorina/fisiología , Actinas/metabolismo , Animales , Neovascularización de la Córnea/genética , Endoglina/genética , Endoglina/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
2.
Exp Eye Res ; 146: 276-282, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27039708

RESUMEN

CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests that while TPP1 protein delivered via the CSF may protect these cells, preservation of the remainder of the retina will require delivery of normal TPP1 more directly to the retina, probably via the vitreous body.


Asunto(s)
Aminopeptidasas/uso terapéutico , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Terapia Genética/métodos , Lipofuscinosis Ceroideas Neuronales/terapia , Degeneración Retiniana/terapia , Células Ganglionares de la Retina/patología , Serina Proteasas/uso terapéutico , Aminopeptidasas/administración & dosificación , Aminopeptidasas/genética , Análisis de Varianza , Animales , Axones/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/administración & dosificación , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Electrorretinografía , Vectores Genéticos/líquido cefalorraquídeo , Infusiones Intraventriculares , Nervio Óptico/citología , Reflejo Pupilar/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/fisiopatología , Serina Proteasas/administración & dosificación , Serina Proteasas/genética , Tripeptidil Peptidasa 1
3.
Physiol Behav ; 90(4): 626-8, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17196624

RESUMEN

This investigation was conducted to examine the relationship between cortisol levels and anxiety-related behavior in nine Angus/Hereford cows. In a non-stressful pasture setting, measures were taken of rumination, distance from another cow, and body position. In a stressful holding pen situation, measures were taken of vocalizations and resistance to entering a squeeze chute. Cortisol was measured in serum samples. Subjects with high levels of cortisol spent less time ruminating (p=0.007) and vocalized more (p=0.07) than subjects with low levels of cortisol. Regardless of statistical significance, all mean differences were in the predicted direction. Cortisol levels were correlated with time spent ruminating (p=0.004) and later entrance to the squeeze chute (p=0.10). All correlations were also in the predicted direction. These findings provide consistent support for the link between cortisol and anxiety-related behavior in beef cattle, and the findings have theoretical and practical implications.


Asunto(s)
Ansiedad/sangre , Ansiedad/fisiopatología , Conducta Animal/fisiología , Animales , Animales Recién Nacidos , Bovinos , Hidrocortisona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA