Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Haematol ; 178(2): 240-249, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28486748

RESUMEN

Telomere dysfunction is implicated in the generation of large-scale genomic rearrangements that drive progression to malignancy. In this study we used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukaemia (AML) patients. Despite the MDS cohort being older, they had significantly longer telomeres than the AML cohort (P < 0·0001) where telomere length was also significantly shorter in younger AML patients (age <60 years) (P = 0·02) and in FLT3 internal tandem duplication-mutated AML patients (P = 0·03). Using a previously determined telomere length threshold for telomere dysfunction (3·81 kb) did not provide prognostic resolution in AML [Hazard ratio (HR) = 0·68, P = 0·2]. In contrast, the same length threshold was highly prognostic for overall survival in the MDS cohort (HR = 5·0, P < 0·0001). Furthermore, this telomere length threshold was an independent parameter in multivariate analysis when adjusted for age, gender, cytogenetic risk group, number of cytopenias and International Prognostic Scoring System (IPSS) score (HR = 2·27, P < 0·0001). Therefore, telomere length should be assessed in a larger prospective study to confirm its prognostic role in MDS with a view to integrating this variable into a revised IPSS.


Asunto(s)
Leucemia Mieloide Aguda/patología , Síndromes Mielodisplásicos/patología , Telómero/patología , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/enzimología , Síndromes Mielodisplásicos/mortalidad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Telomerasa/metabolismo , Adulto Joven
2.
Br J Haematol ; 167(2): 214-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24990087

RESUMEN

Defining the prognosis of individual cancer sufferers remains a significant clinical challenge. Here we assessed the ability of high-resolution single telomere length analysis (STELA), combined with an experimentally derived definition of telomere dysfunction, to predict the clinical outcome of patients with chronic lymphocytic leukaemia (CLL). We defined the upper telomere length threshold at which telomere fusions occur and then used the mean of the telomere 'fusogenic' range as a prognostic tool. Patients with telomeres within the fusogenic range had a significantly shorter overall survival (P < 0·0001; Hazard ratio [HR] = 13·2, 95% confidence interval [CI] = 11·6-106·4) and this was preserved in early-stage disease patients (P < 0·0001, HR=19·3, 95% CI = 17·8-802·5). Indeed, our assay allowed the accurate stratification of Binet stage A patients into those with indolent disease (91% survival at 10 years) and those with poor prognosis (13% survival at 10 years). Furthermore, patients with telomeres above the fusogenic mean showed superior prognosis regardless of their IGHV mutation status or cytogenetic risk group. In keeping with this finding, telomere dysfunction was the dominant variable in multivariate analysis. Taken together, this study provides compelling evidence for the use of high-resolution telomere length analysis coupled with a definition of telomere dysfunction in the prognostic assessment of CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/genética , Acortamiento del Telómero/fisiología , Telómero/fisiología , Estudios de Cohortes , ADN de Neoplasias/genética , Humanos , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/patología , Mutación , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Homeostasis del Telómero/fisiología
3.
Nucleic Acids Res ; 40(6): 2518-26, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22139912

RESUMEN

The loss of telomere function can result in the fusion of telomeres with other telomeric loci, or non-telomeric double-stranded DNA breaks. Sequence analysis of fusion events between short dysfunctional telomeres in human cells has revealed that fusion is characterized by a distinct molecular signature consisting of extensive deletions and micro-homology at the fusion points. This signature is consistent with alternative error-prone end-joining processes. We have examined the role that Mre11 may play in the fusion of short telomeres in human cells; to do this, we have analysed telomere fusion events in cells derived from ataxia-telangiectasia-like disorder (ATLD) patients that exhibit hypomorphic mutations in MRE11. The telomere dynamics of ATLD fibroblasts were indistinguishable from wild-type fibroblasts and they were proficient in the fusion of short telomeres. However, we observed a high frequency of insertion of DNA sequences at the fusion points that created localized sequence duplications. These data indicate that Mre11 plays a role in the fusion of short dysfunctional telomeres in human cells and are consistent with the hypothesis that as part of the MRN complex it serves to stabilize the joining complex, thereby controlling the fidelity of the fusion reaction.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Telómero/química , Ataxia Telangiectasia/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Proteína Homóloga de MRE11 , Mutación , Secuencias Repetitivas de Ácidos Nucleicos , Eliminación de Secuencia , Telómero/metabolismo
4.
Biogerontology ; 10(6): 683-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19214769

RESUMEN

The replicative lifespan of many cell types is determined by the length of telomeres in the initiating cell population. In 20% oxygen, IMR90 cells have a shorter replicative lifespan compared to that achieved in conditions that lower the levels of oxidative stress. We sought to address the role of telomere dynamics in determining the replicative lifespan of IMR90 cells. We analysed clonal populations cultured in parallel in 3 and 20% oxygen. We observed that, at senescence, telomere length was shorter in 3% oxygen and this was proportional to the lifespan extension. We observed no detectable difference in the rate of telomere erosion in the two culture conditions, however as the cells approached senescence the growth rate of the cultures slowed with a commensurate increase in the rate of telomere erosion. We conclude that, in 20% oxygen senescence of IMR90 is telomere-independent, but telomere-dependent in 3% oxygen.


Asunto(s)
Proliferación Celular , Senescencia Celular , Fibroblastos/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Telómero/metabolismo , Antioxidantes/farmacología , Hipoxia de la Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Cinética , Estrés Oxidativo/efectos de los fármacos , Telomerasa/genética , Telomerasa/metabolismo , Transfección
5.
FEBS Lett ; 583(18): 3076-80, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19716824

RESUMEN

Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold.


Asunto(s)
Telomerasa/metabolismo , Telómero/metabolismo , Alelos , Línea Celular , Proliferación Celular , Humanos , Cinética , Telómero/ultraestructura
6.
Genes Dev ; 21(19): 2495-508, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17908935

RESUMEN

The loss of telomere function can result in telomeric fusion events that lead to the types of genomic rearrangements, such as nonreciprocal translocations, that typify early-stage carcinogenesis. By using single-molecule approaches to characterize fusion events, we provide a functional definition of fusogenic telomeres in human cells. We show that approximately half of the fusion events contained no canonical telomere repeats at the fusion point; of those that did, the longest was 12.8 repeats. Furthermore, in addition to end-replication losses, human telomeres are subjected to large-scale deletion events that occur in the presence or absence of telomerase. Here we show that these telomeres are fusogenic, and thus despite the majority of telomeres being maintained at a stable length in normal human cells, a subset of stochastically shortened telomeres can potentially cause chromosomal instability. Telomere fusion was accompanied by the deletion of one or both telomeres extending several kilobases into the telomere-adjacent DNA, and microhomology was observed at the fusion points. This contrasted with telomere fusion that was observed following the experimental disruption of TRF2. The distinct error-prone mutational profile of fusion between critically shortened telomeres in human cells was reminiscent of Ku-independent microhomology-mediated end-joining.


Asunto(s)
Senescencia Celular/genética , Inestabilidad Cromosómica/genética , Telómero/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Eliminación de Secuencia , Secuencias Repetidas en Tándem , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética
7.
Hum Mol Genet ; 15(1): 45-51, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16311252

RESUMEN

Telomeres play a key role in upholding the integrity of the genome, and telomerase expression in spermatogonial stem cells is responsible for the maintenance of telomere length in the human male germline. We have previously described extensive allelic variation in somatic cell telomere length that is set in the zygote, the ultimate source of which may be the germline. This implies that despite telomerase activity, substantial telomere length variation can be generated and tolerated in the germline; in order to investigate this further, we have examined the nature of telomere length variation in the human male germline. Here, we describe an analysis of both genome-wide telomere length and single molecule analysis of specific chromosome ends in human sperm. We observed individual specific differences in genome-wide telomere length. This variation may result from genetic differences within the components that determine the telomere length setting of each individual. Superimposed on the genome wide telomere length setting was a stochastic component of variation that generates germ-cells containing severely truncated telomeres. If not re-lengthened during early embryogenesis, such telomeres may limit the replicative capacity of cells derived from the zygote and have the potential to create fusagenic chromosomes, unbalanced translocations and terminal micro-deletions. These data may have implications for the genetic determination of ageing, genetic disease and fertility.


Asunto(s)
Variación Genética , Inestabilidad Genómica/genética , Espermatozoides/química , Telómero/genética , Factores de Edad , Cartilla de ADN , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
8.
Hum Mol Genet ; 15(5): 725-33, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16421168

RESUMEN

Single telomere length analysis (STELA) of the XpYp telomere has revealed extensive allelic variation and ultra-short telomeres in senescent cells. Superimposed on end-replication losses are additional mutational events that result in large-scale changes in telomere length. In order to establish if the dynamics of the XpYp telomere are typical of human telomeres, here we describe an analysis using STELA of the telomeres of 2p, 11q, 12q, 17p and XpYp. The dynamics of telomere loss (erosion rates and stochastic length changes) was conserved among 2p, 11q, 12q and XpYp within the same cell strains and was dependent on the replicative kinetics of the cells in culture. However, of the telomeres analysed, the telomere of 17p was more stable with a striking paucity of large-scale length changes, and exhibited the shortest recorded allelic distribution (300 bp) in senescent cells and displayed a general, but not absolute, trend towards being the shortest telomere. Ectopic over-expression of hTERT homogenized both allelic and chromosome-specific telomeric distributions. However, telomerase-expressing cancer cells displayed both allelic variation and chromosome-specific telomere length, with 17p displaying the shortest allelic telomere length. Although other telomeres in the genome may share the properties of 17p, these data suggest that physiological levels of telomerase allow differential telomere length regulation and indicate the presence of cis-acting factors that govern both telomeric stability and chromosome-specific telomere length in the presence of telomerase.


Asunto(s)
Cromosomas Humanos/genética , Telómero/genética , Alelos , Línea Celular Tumoral , Células Cultivadas , Senescencia Celular , Células Clonales , Cartilla de ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Variación Genética , Genoma Humano , Humanos , Polimorfismo Genético , Telomerasa/metabolismo , Telómero/metabolismo
9.
J Bacteriol ; 185(19): 5847-53, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-13129957

RESUMEN

In Ralstonia sp. strain U2, the nag catabolic genes, which encode the enzymes for the pathway that catabolizes naphthalene via the alternative ring cleavage gentisate pathway, are transcribed as an operon under the same promoter. nagR, which encodes a LysR-type transcriptional regulator, is divergently transcribed compared to the nag catabolic genes. A 4-bp frameshift deletion in nagR demonstrated that NagR is required for expression of the nag operon. The transcriptional start of the nag operon was mapped, and a putative -10, -35 sigma(70)-type promoter binding site was identified. Further upstream, a site proximal to the promoter was identified as a site that has bases which have been found to be conserved in the activator-binding motif of other naphthalene pathways. Transcriptional fusion studies demonstrated that NagR regulates the expression of the nag operon positively in the presence of salicylate and to a lesser extent in the presence of 2-nitrobenzoate. Mutation of the LysR-type activator-binding motif in the nag promoter-proximal region resulted in a loss of inducibility of a lacZ reporter gene transcriptionally fused to nagAa, the first gene of the operon. However, other mutations in the region increased the effectiveness of salicylate as an inducer.


Asunto(s)
Proteínas Bacterianas/metabolismo , Betaproteobacteria/metabolismo , Regulación Bacteriana de la Expresión Génica , Naftalenos/metabolismo , Operón , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Betaproteobacteria/genética , Eliminación de Gen , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Salicilatos/farmacología , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA