Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 54(1): 38, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131235

RESUMEN

Influenza A virus (IAV) is an important contributing pathogen of porcine respiratory disease complex (PRDC) infections. Evidence in humans has shown that IAV can disturb the nasal microbiota and increase host susceptibility to bacterial secondary infections. Few, small-scale studies have examined the impact of IAV infection on the swine nasal microbiota. To better understand the effects of IAV infection on the nasal microbiota and its potential indirect impacts on the respiratory health of the host, a larger, longitudinal study was undertaken to characterize the diversity and community composition of the nasal microbiota of pigs challenged with an H3N2 IAV. The microbiome of challenged pigs was compared with non-challenged animals over a 6-week period using 16S rRNA gene sequencing and analysis workflows to characterize the microbiota. Minimal changes to microbial diversity and community structure were seen between the IAV infected and control animals the first 10 days post-IAV infection. However, on days 14 and 21, the microbial populations were significantly different between the two groups. Compared to the control, there were several genera showing significant increases in abundance in the IAV group during acute infection, such as Actinobacillus and Streptococcus. The results here highlight areas for future investigation, including the implications of these changes post-infection on host susceptibility to secondary bacterial respiratory infections.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Microbiota , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Subtipo H3N2 del Virus de la Influenza A/genética , Estudios Longitudinales , ARN Ribosómico 16S/genética , Bacterias
2.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32094250

RESUMEN

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Asunto(s)
Haemophilus parasuis/genética , Animales , Biopelículas , Infecciones por Haemophilus/microbiología , Macrófagos Alveolares/microbiología , Fagocitosis/fisiología , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia/genética
3.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460764

RESUMEN

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Asunto(s)
Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/inmunología , Proteínas Recombinantes/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/genética , Serogrupo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Técnicas de Cultivo de Tejidos/veterinaria , Vacunación/veterinaria , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
4.
Microbiology (Reading) ; 165(2): 163-173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543506

RESUMEN

The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host-pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Aminoaciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Mariposas Nocturnas , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Eliminación de Secuencia , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus suis/genética , Streptococcus suis/crecimiento & desarrollo , Streptococcus suis/inmunología , Porcinos , Enfermedades de los Porcinos/patología , Virulencia/genética
5.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30185589

RESUMEN

Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.


Asunto(s)
Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Animales , Protección Cruzada/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Porcinos , Replicación Viral/inmunología
6.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29203546

RESUMEN

Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


Asunto(s)
Proteínas Bacterianas/inmunología , Infecciones Estreptocócicas/veterinaria , Vacunas Estreptocócicas/administración & dosificación , Streptococcus suis/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/genética , Protección Cruzada , Femenino , Genómica , Masculino , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/inmunología , Streptococcus suis/química , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Virulencia
7.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101193

RESUMEN

Staphylococcus aureus is part of the nasal microbiome of many humans and has become a significant public health burden due to infections with antibiotic-resistant strains, including methicillin-resistant S. aureus (MRSA) strains. Several lineages of S. aureus, including MRSA, are found in livestock species and can be acquired by humans through contact with animals. These livestock-associated MRSA (LA-MRSA) isolates raise public health concerns because of the potential for livestock to act as reservoirs for MRSA outside the hospital setting. In the United States, swine harbor a mixed population of LA-MRSA isolates, with the sequence type 398 (ST398), ST9, and ST5 lineages being detected. LA-MRSA ST5 isolates are particularly concerning to the public health community because, unlike the isolates in the ST398 and ST9 lineages, isolates in the ST5 lineage are a significant cause of human disease in both the hospital and community settings globally. The ability of swine-associated LA-MRSA ST5 isolates to adhere to human keratinocytes in vitro was investigated, and the adherence genes harbored by these isolates were evaluated and compared to those in clinical MRSA ST5 isolates from humans with no swine contact. The two subsets of isolates adhered equivalently to human keratinocytes in vitro and contained an indistinguishable complement of adherence genes that possessed a high degree of sequence identity. Collectively, our data indicate that, unlike LA-MRSA ST398 isolates, LA-MRSA ST5 isolates do not exhibit a reduced genotypic or phenotypic capacity to adhere to human keratinocytes.IMPORTANCE Our data indicate that swine-associated livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 isolates are as capable of adhering to human skin and have the same genetic potential to adhere as clinical MRSA ST5 isolates from humans. This suggests that humans in contact with livestock have the potential to become colonized with LA-MRSA ST5 isolates; however, the genes that contribute to the persistence of S. aureus on human skin were absent in LA-MRSA ST5 isolates. The data presented here are important evidence in evaluating the potential risks that LA-MRSA ST5 isolates pose to humans who come into contact with livestock.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesión Bacteriana/fisiología , Queratinocitos/microbiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/veterinaria , Animales , Adhesión Bacteriana/genética , Genes Bacterianos , Genotipo , Humanos , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/transmisión , Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología
8.
Infect Immun ; 85(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28559403

RESUMEN

Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/patogenicidad , Polisacáridos Bacterianos/metabolismo , Tráquea/microbiología , Animales , Proteínas Bacterianas/genética , Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/inmunología , Bronquios/microbiología , Regulación Bacteriana de la Expresión Génica , Mutación , Nariz/microbiología , Porcinos
9.
Infect Immun ; 82(3): 1092-103, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366249

RESUMEN

Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/inmunología , Factores de Virulencia de Bordetella/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Infecciones por Bordetella/microbiología , Proteínas Portadoras/inmunología , Interleucina-10/inmunología , Péptidos/inmunología , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología
10.
J Virol ; 87(17): 9895-903, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824815

RESUMEN

Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacología , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/inmunología , Sus scrofa/virología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antivirales/sangre , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Genes Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/prevención & control , Gripe Humana/transmisión , Gripe Humana/virología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Filogenia , Virus Reordenados/genética , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/transmisión , Vacunas Atenuadas/farmacología , Vacunas de Productos Inactivados/farmacología , Esparcimiento de Virus
11.
Biologicals ; 41(6): 368-76, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23891494

RESUMEN

The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Cytokines, including granulocyte-colony stimulating factor (G-CSF), have been investigated for potential value as biotherapeutic proteins. G-CSF enhances the production and release of neutrophils from bone marrow and is already licensed for use in humans. A limitation of cytokines as immunomodulators is their short half-life which may limit their usefulness as a one-time injectable in production-animal medicine. Here we report that administration of recombinant G-CSF induced a transient neutrophilia in pigs; however, delivery of porcine G-CSF encoded in a replication-defective adenovirus (Ad5) vector significantly increased the neutrophilia pharmacodynamics effect. Pigs given one injection of the Ad5-G-CSF had a neutrophilia that peaked between days 3-11 post-treatment and neutrophil counts remained elevated for more than 2 weeks. Neutrophils from Ad5-G-CSF treated pigs were fully functional based on their ability to release neutrophil extracellular traps and oxidative metabolism after in vitro stimulation. Since acceptable alternatives to the use of antibiotics in food-animal production need to be explored, we provide evidence for G-CSF as a possible candidate for agents in which neutrophils can provide protection.


Asunto(s)
Adenoviridae/genética , Virus Defectuosos/genética , Factor Estimulante de Colonias de Granulocitos/fisiología , Neutrófilos/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Vectores Genéticos/genética , Factor Estimulante de Colonias de Granulocitos/genética , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Homología de Secuencia de Aminoácido , Porcinos , Factores de Tiempo , Replicación Viral
12.
Vet Microbiol ; 284: 109841, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37542929

RESUMEN

Bordetella bronchiseptica and Streptococcus suis are widely distributed swine pathogens. B. bronchiseptica is a primary pathogen and causes atrophic rhinitis and bronchopneumonia. S. suis is a contributing agent to porcine respiratory disease complex and causes systemic diseases including arthritis, meningitis, polyserositis, and septicemia. Colonization with B. bronchiseptica has been associated with increased colonization by other pathogenic bacteria and increased disease severity with viral and bacterial pathogens. It has also been reported to predispose cesarean derived, colostrum deprived (CDCD) piglets to S. suis systemic disease. Here, we evaluated the role of B. bronchiseptica colonization on S. suis colonization, dissemination, and disease in one study using conventional pigs and another using CDCD pigs. Pigs were challenged with S. suis, B. bronchiseptica, or B. bronchiseptica followed by S. suis. Incidence of S. suis disease was not increased in either study for animals pre-inoculated with B. bronchiseptica. Nasal colonization with S. suis was increased in coinfected animals, while B. bronchiseptica was similar between mono- and co-infected animals. Although increased S. suis disease was not seen in coinfected pigs, there is evidence that B. bronchiseptica can increase colonization with S. suis, which may contribute to enhanced disease when animals are stressed or immunocompromised.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Streptococcus suis , Enfermedades de los Porcinos , Embarazo , Femenino , Animales , Porcinos , Enfermedades de los Porcinos/microbiología , Infecciones por Bordetella/epidemiología , Infecciones por Bordetella/veterinaria , Nariz , Bacterias
13.
Front Microbiol ; 14: 1260465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840723

RESUMEN

Bordetella bronchiseptica is a widespread, highly infectious bacterial pathogen that causes respiratory disease in swine and increases the severity of respiratory infections caused by other viral or bacterial pathogens. However, the impact of B. bronchiseptica infection on the swine respiratory microbiota has not been thoroughly investigated. Here, we aim to assess the influence of B. bronchiseptica infection on the community structure and abundance of members of the swine nasal microbiota. To do so, the nasal microbiota of a non-infected control group and a group infected with B. bronchiseptica (BB group) were characterized prior to B. bronchiseptica strain KM22 challenge (day 0) and on selected days in the weeks following B. bronchiseptica challenge (days 1, 3, 7, 10, 14, 21, 36, and 42). Bordetella bronchiseptica was cultured from nasal samples of the BB group to assess nasal colonization. The results showed that B. bronchiseptica colonization did not persistently affect the nasal bacterial diversity of either of the treatment groups (alpha diversity). However, the bacterial community structures (beta diversity) of the two treatment groups significantly diverged on day 7 when peak colonization levels of B. bronchiseptica were detected. This divergence continued through the last sampling time point. In addition, Pasteurella, Pasteurellaceae (unclassified), Mycoplasma, Actinobacillus, Streptococcus, Escherichia-Shigella, and Prevotellaceae (unclassified) showed increased abundances in the BB group relative to the control group at various time points. This study revealed that B. bronchiseptica colonization can disturb the upper respiratory tract microbiota, and further research is warranted to assess how these disturbances can impact susceptibility to secondary infections by other respiratory pathogens.

14.
Infect Immun ; 80(3): 1025-36, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22158743

RESUMEN

The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg(+)) phase and a nonvirulent (Bvg(-)) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg(-) phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvg(i)) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg(+) phase-locked mutant and the wild-type strain were indistinguishable. The Bvg(+) phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg(+) phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Bordetella/veterinaria , Bordetella bronchiseptica/patogenicidad , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/transmisión , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Infecciones por Bordetella/microbiología , Infecciones por Bordetella/patología , Infecciones por Bordetella/transmisión , Regulación Bacteriana de la Expresión Génica , Mutación , Sistema Respiratorio/microbiología , Porcinos , Enfermedades de los Porcinos/patología , Factores de Transcripción/genética , Factores de Virulencia/genética
15.
Front Vet Sci ; 9: 827082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296061

RESUMEN

Streptococcus equi subspecies zooepidemicus (SEZ) is a zoonotic pathogen capable of causing severe disease in many mammalian species. Historically, SEZ has not been a common cause of disease in pigs in North America; however, in 2019, SEZ caused mortality events leading to severe illness and 30-50% mortality in exposed animal groups. Because of the rapid progression of disease, it is important to investigate intervention strategies to prevent disease development. In this study, pigs were divided into four groups: (1) vaccinated with an inactivated SEZ vaccine generated from a highly mucoid 2019 mortality event isolate; (2) vaccinated with an inactivated SEZ vaccine generated from a genetically similar, non-mucoid isolate from a guinea pig; (3) and (4) sham vaccinated. Following boost vaccination, groups 1-3 were challenged with a 2019 mortality event isolate and group 4 were non-challenged controls. Antibody titers were higher for SEZ vaccinated animals than sham vaccinated animals; however, no anamnestic response was observed, and titers were lower than typically seen following the use of inactivated vaccines. Vaccination did not provide protection from disease development or mortality following challenge, which could be associated with the comparatively low antibody titers generated by vaccination. Surviving pigs also remained colonized and transmitted SEZ to naïve contact pigs 3 weeks following challenge, indicating that healthy animals can act as a source of SEZ exposure. Future investigation should evaluate different vaccine formulations, such as increased antigen load or an alternative adjuvant, that could induce a more robust adaptive immune response.

16.
Vet Microbiol ; 264: 109271, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826647

RESUMEN

Streptococcus equi subspecies zooepidemicus (SEZ) is a commensal bacterium of horses and causes infections in mammalian species, including humans. Historically, virulent strains of SEZ caused high mortality in pigs in China and Indonesia, while disease in the U.S. was infrequent. More recently, high mortality events in sows were attributed to SEZ in North America. The SEZ isolates from these mortality events have high genetic similarity to an isolate from an outbreak in China. Taken together, this may indicate SEZ is an emerging threat to swine health. To generate a disease model and evaluate the susceptibility of healthy, conventionally raised pigs to SEZ, we challenged sows and five-month-old pigs with an isolate from a 2019 mortality event. Pigs were challenged with a genetically similar guinea pig isolate or genetically distinct horse isolate to evaluate comparative virulence. The swine isolate caused severe systemic disease in challenged pigs with 100 % mortality. Disease manifestation in sows was similar to field reports: lethargy/depression, fever, reluctance to rise, and high mortality. The guinea pig isolate also caused severe systemic disease; however, most five-month-old pigs recovered. In contrast, the horse isolate did not cause disease and was readily cleared from the respiratory tract. In conclusion, we were able to replicate disease reported in the field. The results indicate differences in virulence between isolates, with the highest virulence associated with the swine isolate. Additionally, we generated a challenge model that can be used in future research to evaluate virulence factors and disease prevention strategies.


Asunto(s)
Enfermedades de los Caballos , Infecciones Estreptocócicas , Streptococcus equi , Enfermedades de los Porcinos , Replicación Viral , Animales , Modelos Animales de Enfermedad , Femenino , Cobayas , Enfermedades de los Caballos/virología , Caballos , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/virología , Streptococcus equi/fisiología , Porcinos , Enfermedades de los Porcinos/virología , Replicación Viral/fisiología
17.
J Clin Microbiol ; 49(4): 1542-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21270231

RESUMEN

Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Análisis por Micromatrices/métodos , Infecciones del Sistema Respiratorio/veterinaria , Enfermedades de los Porcinos/diagnóstico , Virología/métodos , Virosis/veterinaria , Animales , Circovirus/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Coronavirus Respiratorio Porcino/aislamiento & purificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/virología , Virosis/diagnóstico , Virosis/virología
18.
Vet Immunol Immunopathol ; 234: 110205, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33636545

RESUMEN

Glaesserella (Haemophilus) parasuis is a part of the microbiota of healthy pigs and also causes the systemic condition called Glässer's disease. G. parasuis is categorized by it capsular polysaccharide into 15 serovars. Because of the serovar and strain specific immunity generated by whole cell vaccines and the rapid onset of disease, G. parasuis has been difficult to control in the swine industry. This report investigated the protection afforded by the use of two serovar 5 isolates (Nagasaki and HS069) as whole cell, killed bacterins against homologous challenge and heterologous challenge with the serovar 1 strain 12939 to better understand bacterin generated immunity. Both bacterins induced a high antibody titer to the vaccine strain and the heterologous challenge strain. Protection was seen with both bacterins against homologous challenge; however, after heterologous challenge, the HS069 bacterin provided complete protection and all Nagasaki bacterin vaccinated animals succumbed to disease. The difference in protection appears to be due to differences in antibody specificity and the capacity of induced antibody to fix complement and opsonize G. parasuis, as shown by Western blotting and functional assays. This report shows the importance of strain selection when developing bacterin vaccines, as some strains are better able to generate heterologous protection. The difference in protection seen here can also be utilized to detect proteins of interest for subunit vaccine development.


Asunto(s)
Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/clasificación , Haemophilus parasuis/inmunología , Inmunidad Heteróloga , Serogrupo , Enfermedades de los Porcinos/inmunología , Factores de Edad , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/microbiología , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/microbiología , Vacunación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
19.
Microb Pathog ; 49(5): 237-45, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20558274

RESUMEN

Influenza virus (Flu) infection and secondary complications are a leading cause of morbidity and mortality worldwide. The increasing number of annual Flu cases, coupled with the recent Flu pandemic, has amplified concerns about the impact of Flu on human and animal health. Similar to humans, Flu is problematic in pigs, not only as a primary pathogen but as an agent in polymicrobial pneumonia. Bordetella species play a role in mixed infections and often colonize the respiratory tract without overt clinical signs. Pigs serve as a valuable animal model for several respiratory pathogens, including Bordetella (Bb) and Flu. To investigate Flu/Bb coinfection pathogenesis, a study was completed in which pigs were inoculated with Flu-only, Bb-only or both agents (Flu/Bb). Results indicate that Flu clearance is not altered by Bb infection, but Flu does enhance Bb colonization. Pulmonary lesions in the Flu/Bb group were more severe when compared to Flu-only or Bb-only groups and Bb did not cause significant lesions unless pigs were coinfected with Flu. The type I interferon response was elevated in coinfected pigs, but increased expression of antiviral genes Mx and PKR did not appear to enhance Flu clearance in coinfected pigs, as viral clearance was similar between Flu/Bb and Flu-only groups. IL-1beta and IL-8 were elevated in lungs of coinfected pigs, correlating to the days enhanced lesions were observed. Overall, Flu infection increased Bb colonization and enhanced production of proinflammatory mediators that likely contribute to exacerbated pulmonary lesions.


Asunto(s)
Infecciones por Bordetella/complicaciones , Infecciones por Bordetella/patología , Pulmón/patología , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/patología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/virología , Animales , Infecciones por Bordetella/inmunología , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/inmunología , Bordetella bronchiseptica/patogenicidad , Modelos Animales de Enfermedad , Femenino , Proteínas de Unión al GTP/biosíntesis , Interferón Tipo I/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-8/biosíntesis , Pulmón/microbiología , Pulmón/virología , Proteínas de Resistencia a Mixovirus , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Porcinos , eIF-2 Quinasa/biosíntesis
20.
Front Vet Sci ; 7: 255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509805

RESUMEN

Oral antibiotics are a critical tool for fighting bacterial infections, yet their use can have negative consequences, such as the disturbance of healthy gut bacterial communities and the dissemination of antibiotic residues in feces. Altering antibiotic administration route may limit negative impacts on intestinal microbiota and reduce selective pressure for antimicrobial resistance genes (ARG) persistence and mobility. Thus, a study was performed in pigs to evaluate route of therapeutic oxytetracycline (oxytet) administration, an antibiotic commonly used in the U.S. swine industry, on intestinal microbial diversity and ARG abundance. Given that oral antibiotics would be in direct contact with intestinal bacteria, we hypothesized that oral administration would cause a major shift in intestinal bacterial community structure when compared to injected antibiotic. We further postulated that the impact would extend to the diversity and abundance of ARG in swine feces. At approximately 3 weeks-of-age, piglets were separated into three groups (n = 21-22 per group) with two groups receiving oxytet (one via injection and the second via feed) and a third non-medicated group. Oxytet levels in the plasma indicated injected antibiotic resulted in a spike 1 day after administration, which decreased over time, though oxytet was still detected in plasma 14 days after injection. Conversely, in-feed oxytet delivery resulted in lower but less variable oxytet levels in circulation and high concentrations in feces. Similar trends were observed in microbial community changes regardless of route of oxytet administration; however, the impact on the microbial community was more pronounced at all time points and in all samples with in-feed administration. Fecal ARG abundance was increased with in-feed administration over injected, with genes for tetracycline and aminoglycoside resistance enriched specifically in the feces of the in-feed group. Sequencing of plasmid-enriched samples revealed multiple genetic contexts for the resistance genes detected and highlighted the potential role of small plasmids in the movement of antibiotic resistance genes. The findings are informative for disease management in food animals, but also manure management and antibiotic therapy in human medicine for improved antibiotic stewardship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA