Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochim Biophys Acta ; 1860(4): 746-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26774643

RESUMEN

BACKGROUND: Amyloid ß (Aß) peptide aggregation is the main molecular mechanism underlying the development of Alzheimer's disease, the most widespread form of senile dementia worldwide. Increasing evidence suggests that the key factor leading to impaired neuronal function is accumulation of water-soluble Aß oligomers rather than formation of the senile plaques created by the deposition of large fibrillary aggregates of Aß. However, several questions remain about the preliminary steps and the progression of Aß oligomerization. METHODS: We show that the initial stages of the aggregation of fluorescently labeled Aß can be determined with a high degree of precision and at physiological (i.e., nanomolar) concentrations by using either steady-state fluorimetry or time-correlated single-photon counting. RESULTS: We study the dependence of the oligomerization extent and rate on the Aß concentration. We determine the chemical binding affinity of fluorescently labeled Aß for liposomes that have been recently shown to be pharmacologically active in vivo, reducing the Aß burden within the brain. We also probe their capacity to hinder the Aß oligomerization process in vitro. CONCLUSIONS: We introduced a fluorescence assay allowing investigation of the earliest steps of Aß oligomerization, the peptide involved in Alzheimer's disease. The assay proved to be sensitive even at Aß concentrations as low as those physiologically observed in the cerebrospinal fluid. GENERAL SIGNIFICANCE: This work represents an extensive and quantitative study on the initial events of Aß oligomerization at physiological concentration. It may enhance our comprehension of the molecular mechanisms leading to Alzheimer's disease, thus paving the way to novel therapeutic strategies.


Asunto(s)
Péptidos beta-Amiloides/química , Liposomas/química , Fragmentos de Péptidos/química , Agregación Patológica de Proteínas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo , Espectrometría de Fluorescencia
2.
Chemphyschem ; 18(8): 917-925, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28121059

RESUMEN

Reversible mixed-ion intercalation in nonselective host structures has promising applications in desalination, mixed-ion batteries, wastewater treatment, and lithium recovery through electrochemical ion pumping. One class of host compound that possesses many of the requirements needed for such applications (cost effectiveness, fast ion kinetics, and stability in an aqueous medium) includes the Prussian blue derivatives. Herein, the fundamental process of intercalation of multiple cations is studied at the thermodynamic level by means of galvanostatic cycling. Nickel hexacyanoferrate is focused upon because of its stability and low potential for electrochemical process relative to other hexacyanoferrates. Various cations can be intercalated; large cations (K+ and NH4+ ) are intercalated at higher potentials than those of smaller cations (Na+ ). When mixtures of cations are present in solution, the potential profile is not qualitatively altered with respect to single-salt solutions, but the potential of (de-)intercalation is shifted; a simple thermodynamic model is introducted that is able to predict the potential and distribution at which intercalation takes place.

3.
Environ Sci Technol ; 50(22): 12072-12094, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27718544

RESUMEN

Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.


Asunto(s)
Ósmosis , Salinidad , Agua Dulce/química , Membranas Artificiales , Energía Renovable , Agua de Mar/química , Purificación del Agua
4.
Nucleic Acids Res ; 41(3): 2009-19, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23248010

RESUMEN

The opening of DNA double strands is extremely relevant to several biological functions, such as replication and transcription or binding of specific proteins. Such opening phenomenon is particularly sensitive to the aqueous solvent conditions in which the DNA molecule is dispersed, as it can be observed by considering the classical dependence of DNA melting temperature on pH and salt concentration. In the present work, we report a single-molecule study of the stability of DNA against denaturation when subjected to changes in solvent. We investigated the appearance of DNA instability under specific external applied force and imposed twist values, which was revealed by an increase in the temporal fluctuations in the DNA extension. These fluctuations occur in the presence of a continuous interval of equilibrium states, ranging from a plectonemic state to a state characterized by denaturation bubbles. In particular, we observe the fluctuations only around a characteristic force value. Moreover, this characteristic force is demonstrated to be notably sensitive to variations in the pH and ionic strength. Finally, an extension of a theoretical model of plectoneme formation is used to estimate the average denaturation energy, which is found to be linearly correlated to the melting temperature of the DNA double strands.


Asunto(s)
ADN/química , Fenómenos Biomecánicos , Concentración de Iones de Hidrógeno , Nanotecnología , Desnaturalización de Ácido Nucleico , Concentración Osmolar
5.
J Theor Biol ; 318: 110-23, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23160143

RESUMEN

I recently reported some examples of mass-action equations that have a continuous manifold of marginally stable stationary states [Brogioli, D., 2010. Marginally stable chemical systems as precursors of life. Phys. Rev. Lett. 105, 058102; Brogioli, D., 2011. Marginal stability in chemical systems and its relevance in the origin of life. Phys. Rev. E 84, 031931]. The corresponding chemical reaction networks show nonclassical effects, i.e. a violation of the mass-action equations, under the effect of the concentration fluctuations: the chemical system drifts along the marginally stable states. I proposed that this effect is potentially involved in abiogenesis. In the present paper, I analyze the mathematical properties of mass-action equations of marginally stable chemical reaction networks. The marginal stability implies that the mass-action equations obey some conservation law; I show that the mathematical properties of the conserved quantity characterize the motion along the marginally stable stationary state manifold, i.e. they allow to predict if the fluctuations give rise to a random walk or a drift under the effect of concentration fluctuations. Moreover, I show that the presence of the drift along the manifold of marginally stable stationary-states is a critical property, i.e. at least one of the reaction constants must be fine tuned in order to obtain the drift.


Asunto(s)
Fenómenos Químicos , Modelos Químicos , Algoritmos , Catálisis , Cadenas de Markov , Origen de la Vida
6.
J Chem Phys ; 139(18): 184102, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24320249

RESUMEN

The mass-action law, which predicts the rates of chemical reactions, is widely used for modeling the kinetics of the chemical reactions and their stationary states, also for complex chemical reaction networks. However, violations of the mass-action equations have been reported in various cases: in confined systems with a small number of molecules, in non-ideally-stirred systems, when the reactions are limited by the diffusion, at high concentrations of reactants, or in chemical reaction networks with marginally stable mass-action equations. In this paper, I describe a new mechanism, leading to the violation of the mass-action equations, that takes place at a low concentration of at least one of the reactants; in this limit, the reaction rates can be easily inferred from the chemical reaction network. I propose that this mechanism underlies the replication stability of the hypercycles, a class of chemical reaction networks hypothetically connected with abiogenesis. I provide two simple examples of chemical reaction networks in which the mechanism leading to the violation of the mass-action law is present. I study the two chemical reaction networks by means of a simulation performed with a cellular automaton model. The results have a general validity and represent a limitation of the validity of the mass-action law, which has been overlooked up to now in the studies about the chemical reaction networks.

7.
Nucleic Acids Res ; 38(20): 7089-99, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20601682

RESUMEN

Herein, we study the nanomechanical characteristics of single DNA molecules in the presence of DNA binders, including intercalating agents (ethidium bromide and doxorubicin), a minor groove binder (netropsin) and a typical alkylating damaging agent (cisplatin). We have used magnetic tweezers manipulation techniques, which allow us to measure the contour and persistence lengths together with the bending and torsional properties of DNA. For each drug, the specific variations of the nanomechanical properties induced in the DNA have been compared. We observed that the presence of drugs causes a specific variation in the DNA extension, a shift in the natural twist and a modification of bending dependence on the imposed twist. By introducing a naive model, we have justified an anomalous correlation of torsion data observed in the presence of intercalators. Finally, a data analysis criterion for discriminating between different molecular interactions among DNA and drugs has been suggested.


Asunto(s)
ADN/química , Antineoplásicos Alquilantes/farmacología , Fenómenos Biomecánicos , Cisplatino/farmacología , ADN/efectos de los fármacos , Doxorrubicina/farmacología , Etidio/farmacología , Sustancias Intercalantes/farmacología , Ligandos , Magnetismo , Netropsina/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos
8.
ChemElectroChem ; 9(14): e202200109, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36033833

RESUMEN

Different strategies can be used to acquire dynamic impedance spectra during a cyclic voltammetry experiment. The spectra are then analyzed by fitting them with a model using a weighted non-linear least-squares minimization algorithm. The choice of the weighting factors is not trivial and influences the value of the extracted parameters. At variance with the classic electrochemical impedance spectroscopy, dynamic impedance measurements are performed under non-stationary conditions, making them typically more prone to errors arising from the voltage and current analog-to-digital conversion. Under the assumption that the noise in the voltage and current signals have a constant variance along the measurement and that it is uncorrelated between distinct samples, we calculate an expression for the expected variance of the error of the resulting immittances, which considers the specific procedure used to extract the spectra under the time-varying nature of the measurements. The calculated variance of the error is then used as a rigorous way to evaluate the weighting factors of the least-squares minimization, assuming that the fitted model is ideally exact and that there are no systematic errors. By exploring two classical electrochemical systems and fitting the measured spectra with a transfer function measurement model, namely with the Padé approximants, we show that the variance evaluated with our method captures the frequency dependence of the resulting residuals and can be used for reliably performing the complex non-linear least-squares fitting procedure.

9.
Eur Biophys J ; 40(1): 59-68, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20882274

RESUMEN

Binding of ligands to DNA gives rise to several relevant biological and biomedical effects. Here, through the use of atomic force microscopy (AFM), we studied the consequences of drug binding on the morphology of single DNA molecules. In particular, we quantitatively analyzed the effects of three different DNA-binding molecules (doxorubicin, ethidium bromide, and netropsin) that exert various pharmacologic and therapeutic effects. The results of this study show the consequences of intercalation and groove molecular binding on DNA conformation. These single-molecule measurements demonstrate morphological features that reflect the specific modes of drug-DNA interaction. This experimental approach may have implications in the design of therapeutically effective agents.


Asunto(s)
ADN/química , Doxorrubicina/química , Etidio/química , Netropsina/química , ADN/efectos de los fármacos , ADN/ultraestructura , Doxorrubicina/farmacología , Etidio/farmacología , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Ligandos , Microscopía de Fuerza Atómica/métodos , Netropsina/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos
10.
Appl Opt ; 50(20): 3419-27, 2011 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-21743548

RESUMEN

In a schlieren setup, a lens system forms an image of the refractive index fluctuations of a transparent sample onto a matrix detector while an intensity mask is positioned in the Fourier plane of a collecting lens to perform the required spatial filtering. In the absence of the mask, the resulting technique is that of a shadowgraph. The two methods provide different information about the refractive index of transparent fluids and can be used both for visualization purposes and scattering measurements. Here, we describe the effect of the intensity mask on the technique transfer function, i.e., its ability to detect different spatial frequencies and show how the special cases of shadowgraph, schlieren, and the transition between the two can be derived. We also present experimental data that agree well with our predictions.


Asunto(s)
Lentes , Óptica y Fotónica , Algoritmos , Ingeniería/métodos , Diseño de Equipo , Análisis de Fourier , Luz , Modelos Estadísticos , Refractometría , Dispersión de Radiación
11.
Phys Rev Lett ; 105(5): 058102, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20867955

RESUMEN

Current research on the origin of life aims at finding the simplest entity that can undergo spontaneous Darwinian evolution toward increasing replication efficiency. Here I consider some of the models of self-replicating molecular systems, and I show that they exhibit a distinct feature, namely, an infinity of stationary states forming a continuous curve; i.e., they are only marginally stable. I show that, in marginally stable chemical systems, thermodynamic fluctuations induce a drift directed toward increasing replication efficiency. This drift represents a form of evolution, taking place slowly, cooperatively, in macroscopic volumes of water.


Asunto(s)
Evolución Biológica , Modelos Biológicos , ARN/genética , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Termodinámica , Agua/química
12.
Eur Biophys J ; 39(12): 1613-23, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20694815

RESUMEN

ß-Amyloid peptide (Aß) plays a key role in the pathogenesis of Alzheimer disease (AD). Monomeric Aß undergoes aggregation, forming oligomers and fibrils, resulting in the deposition of plaques in the brain of AD patients. A widely used protocol for fibril formation in vitro is based on incubation of the peptide at low pH and ionic strength, which generates Aß fibrils several microns long. What happens to such fibrils once they are brought to physiological pH and ionic strength for biological studies is not fully understood. In this investigation, we show that these changes strongly affect the morphology of fibrils, causing their fragmentation into smaller ones followed by their aggregation into disordered structures. We show that an increase in pH is responsible for fibril fragmentation, while increased ionic strength is responsible for the aggregation of fibril fragments. This behavior was confirmed on different batches of peptide either produced by the same company or of different origin. Similar aggregates of short fibrils are obtained when monomeric peptide is incubated under physiological conditions of pH and ionic strength, suggesting that fibril morphology is independent of the fibrillation protocol but depends on the final chemical environment. This was also confirmed by experiments with cell cultures showing that the toxicity of fibrils with different initial morphology is the same after addition to the medium. This information is of fundamental importance when Aß fibrils are prepared in vitro at acidic pH and then diluted into physiological buffer for biological investigations.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Amiloide/química , Amiloide/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/ultraestructura , Péptidos beta-Amiloides/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Neuroblastoma/metabolismo , Neuroblastoma/patología , Concentración Osmolar , Fragmentos de Péptidos/ultraestructura , Estabilidad Proteica , Dispersión de Radiación , Células Tumorales Cultivadas
13.
Adv Mater ; 32(23): e1905440, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32307755

RESUMEN

Due to the ubiquitous presence of lithium-ion batteries in portable applications, and their implementation in the transportation and large-scale energy sectors, the future cost and availability of lithium is currently under debate. Lithium demand is expected to grow in the near future, up to 900 ktons per year in 2025. Lithium utilization would depend on a strong increase in production. However, the currently most extended lithium extraction method, the lime-soda evaporation process, requires a period of time in the range of 1-2 years and depends on weather conditions. The actual global production of lithium by this technology will soon be far exceeded by market demand. Alternative production methods have recently attracted great attention. Among them, electrochemical lithium recovery, based on electrochemical ion-pumping technology, offers higher capacity production, it does not require the use of chemicals for the regeneration of the materials, reduces the consumption of water and the production of chemical wastes, and allows the production rate to be controlled, attending to the market demand. Here, this technology is analyzed with a special focus on the methodology, materials employed, and reactor designs. The state-of-the-art is reevaluated from a critical perspective and the viability of the different proposed methodologies analyzed.

14.
ChemSusChem ; 13(20): 5460-5467, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32833306

RESUMEN

The efficient production of energy from low-temperature heat sources (below 100 °C) would open the doors to the exploitation of a huge amount of heat sources such as solar, geothermal, and industrial waste heat. Thermal regenerable redox-flow batteries (TRBs) are flow batteries that store energy in concentration cells that can be recharged by distillation at temperature <100 °C, exploiting low-temperature heat sources. Using a single membrane cell setup and a suitable redox couple (LiBr/Br2 ), a TRB has been developed that is able to store a maximum volumetric energy of 25.5 Wh dm-3 , which can be delivered at a power density of 8 W m-2 . After discharging 30 % of the volumetric energy, a total heat-to-electrical energy conversion efficiency of 4 % is calculated, the highest value reported so far in harvesting of low-temperature heat.

15.
Phys Rev E ; 99(5-1): 053115, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212452

RESUMEN

Equilibrium phenomena are characterized by time symmetry. Thermodynamic fluctuations are also time-symmetric at equilibrium. Conversely, diffusion of a solute in a liquid in the presence of a gradient is a nonequilibrium phenomenon, which gives rise to long-range fluctuations with amplitude much larger than the equilibrium one for small enough wave number. In the case of diffusion in binary mixtures such fluctuations are time-symmetric, notwithstanding the fact that they are generated by a nonequilibrium condition. In this paper, we investigate diffusion of two solutes in a ternary liquid mixture by means of fluctuating hydrodynamics theory. We show that the time-cross-correlation function of the concentrations is not time-symmetric, hence showing that time symmetry is violated for such nonequilibrium fluctuations. We discuss the feasibility of experiments aimed at the detection of the asymmetry of the cross-correlation function of nonequilibrium concentration fluctuations in ternary mixtures, as envisaged in the Giant Fluctuations (NEUF-DIX) microgravity project of the European Space Agency.

16.
Rev Sci Instrum ; 90(8): 085109, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472663

RESUMEN

We describe a flowing-junction cell with cylindrical symmetry suitable to investigate fluctuations and pattern formation at the diffusing interface between two miscible phases of a liquid mixture. The continuous outflow of the remixed fluid through a thin slit located at the midheight of the sample allows the preparation of an initially sharp interface. The system can be used in both gravity-stable and unstable conditions. In the stable case, the denser liquid is on the bottom of the cell and mass diffusion is the only active process for remixing the two liquids. Once the flow is stopped, one can investigate nonequilibrium fluctuations during free-diffusion in a binary mixture or double diffusive instabilities in multicomponent mixtures. Two horizontal transparent windows allow vertical mapping of the fluid flow by using shadowgraphy. In the unstable condition, with the denser fluid on top, stopping the radial flow at the interface gives rise to a Rayleigh-Taylor instability, which drives the denser liquid toward the bottom of the cell. The fact that the cell can maintain the system in the unstable condition shows that it is suitable to perform experiments under microgravity conditions. With respect to other free-diffusion cells, the proposed configuration has the advantage that the interface is extremely stable and flat, and that the experiments can be repeated by just flowing the cell with fresh liquids.


Asunto(s)
Hidrodinámica , Difusión , Diseño de Equipo
17.
ACS Appl Mater Interfaces ; 11(12): 11999-12007, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30821956

RESUMEN

Composites consisting of garnet-type Li7La3Zr2O12 (LLZO) ceramic particles dispersed in a solid polymer electrolyte based on poly(ethylene oxide) (PEO) have recently been investigated as a possible electrolyte material in all solid state Li ion batteries. The interface between the two materials, that is, LLZO/PEO, is of special interest for the transport of lithium ions in the composite. For obtaining the desired high ionic conductivity, Li+ ions have to pass easily across this interface. However, previous research found that the interface is highly resistive. Here, we further investigate the interface between Al-substituted LLZO and PEO-LiClO4 electrolytes in the frame of a theoretical description, which is based on space-charge layers. By theoretical calculations supported by experiments, we find that the interface is highly resistive. From the results, we have deduced that the highest contribution to this resistance comes from a high activation energy and not from electrostatic repulsion of lithium.

18.
ChemElectroChem ; 6(21): 5387-5395, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31894198

RESUMEN

Dynamic multi-frequency analysis (DMFA) is capable of acquiring high-quality frequency response of electrochemical systems under non-stationary conditions in a broad range of frequencies. In this work, we used DMFA to study the kinetics of (de-)intercalation of univalent cations (Na+ and K+) in thin films of nickel hexacyanoferrate (NiHCF) during cyclic voltammetry. For this system, the classic stationary electrochemical impedance spectroscopy fails due to the instability of the oxidized form of NiHCF. We are showing that such spectra can be fitted with a physical model described by a simple two-step intercalation mechanism: an adsorption step followed by an insertion step. The extracted kinetic parameters are depending on the state of charge as well on the nature of the inserted cation.

19.
Opt Express ; 16(25): 20272-82, 2008 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19065166

RESUMEN

Light scattering detection in the near field, a rapidly expanding family of scattering techniques, has recently proved to be an appropriate procedure for performing dynamic measurements. Here we report an algorithm, first suggested by Oh et al. (Phys. Rev. E 69, 21106 (2004)), based on the evaluation of the exposure time dependent spectrum (ETDS), which makes it possible to measure the fast dynamics of a colloidal suspension with the aid of a simple near field scattering apparatus and a CCD camera. The algorithm consists in acquiring static spectra in the near field at different exposure times, so that the measured decay times are limited only by the exposure time of the camera and not by its frame rate. The experimental set-up is based on a modified microscope, where the light scattered in the near field is collected by a commercial objective, but (unlike in standard microscopes) the light source is a He-Ne laser which increases the instrument sensitivity. The apparatus and the algorithm have been validated by considering model systems of standard spherical nano-particle.


Asunto(s)
Algoritmos , Modelos Teóricos , Nanopartículas/análisis , Nanopartículas/química , Nanotecnología/instrumentación , Nefelometría y Turbidimetría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Coloides/análisis , Coloides/química , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 041112, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17994941

RESUMEN

We report the results of an experimental study of the static and dynamic properties of long wavelength concentration fluctuations in a mixture of glycerol and water undergoing free diffusion. The shadowgraph method was used to measure both the mean-squared amplitude and the temporal correlation function of the fluctuations for wave vectors so small as to be inaccessible to dynamic light scattering. For a fluid with a stabilizing vertical concentration gradient, the fluctuations are predicted to have a decay rate that increases with decreasing wave vector q , for wave vectors below a cutoff wave vector qC, determined by gravity and the fluid properties. This behavior is caused by buoyant forces acting on the fluctuations. We find that for wave vectors above approximately qC, the decay rate does vary in the normal diffusive manner as Dq2, where D is the mass diffusion coefficient. Furthermore, for q approximately less than qC we find that longer wavelength fluctuations decay more rapidly than do shorter wavelength fluctuations, i.e., the behavior is nondiffusive, as predicted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA