Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Part Fibre Toxicol ; 18(1): 2, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413506

RESUMEN

In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios , Incendios Forestales , Exposición a Riesgos Ambientales , Material Particulado/análisis , Material Particulado/toxicidad , Humo
2.
Environ Res ; 187: 109627, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417507

RESUMEN

BACKGROUND: Dietary intake of the omega-3 family of polyunsaturated fatty acids (ω-3 FA) is associated with anti-inflammatory effects. However, unsaturated fatty acids are susceptible to oxidation, which produces pro-inflammatory mediators. Ozone (O3) is a tropospheric pollutant that reacts rapidly with unsaturated fatty acids to produce electrophilic and oxidative mediators of inflammation. OBJECTIVE: Determine whether supplementation with ω-3 FA alters O3-induced oxidative stress in human airway epithelial cells (HAEC). METHODS: 16-HBE cells expressing a genetically encoded sensor of the reduced to oxidized glutathione ratio (GSH/GSSG, EGSH) were supplemented with saturated, monounsaturated, or ω-3 FA prior to exposure to 0, 0.08, 0.1, or 0.3 ppm O3. Lipid peroxidation was measured in cellular lipid extracts and intact cells following O3 exposure. RESULTS: Relative to cells incubated with the saturated or monounsaturated fatty acids, cells supplemented with ω-3 FA containing 5 or 6 double bonds showed a marked increase in EGSH during exposure to O3 concentrations as low as 0.08 ppm. Consistent with this finding, the concentration of lipid hydroperoxides produced following O3 exposure was significantly elevated in ω-3 FA supplemented cells. DISCUSSION: Supplementation with polyunsaturated ω-3 FA potentiates oxidative responses, as indicated by EGSH, in HAEC exposed to environmentally relevant concentrations of O3. This effect is mediated by the increased formation of lipid hydroperoxides produced by the reaction of O3 with polyunsaturated fatty acids. Given the inflammatory activity of lipid hydroperoxides, these findings have implications for the potential role of ω-3 FA in increasing human susceptibility to the adverse health effects of O3 exposure.


Asunto(s)
Ácidos Grasos Omega-3 , Ozono , Suplementos Dietéticos , Células Epiteliales , Ácidos Grasos , Humanos , Estrés Oxidativo , Ozono/toxicidad
3.
Am J Respir Crit Care Med ; 197(10): 1319-1327, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29232153

RESUMEN

RATIONALE: Acute respiratory effects of low-level ozone exposure are not well defined in older adults. OBJECTIVES: MOSES (The Multicenter Ozone Study in Older Subjects), although primarily focused on acute cardiovascular effects, provided an opportunity to assess respiratory responses to low concentrations of ozone in older healthy adults. METHODS: We performed a randomized crossover, controlled exposure study of 87 healthy adults (59.9 ± 4.5 yr old; 60% female) to 0, 70, and 120 ppb ozone for 3 hours with intermittent exercise. Outcome measures included spirometry, sputum markers of airway inflammation, and plasma club cell protein-16 (CC16), a marker of airway epithelial injury. The effects of ozone exposure on these outcomes were evaluated with mixed-effect linear models. A P value less than 0.01 was chosen a priori to define statistical significance. MEASUREMENTS AND MAIN RESULTS: The mean (95% confidence interval) FEV1 and FVC increased from preexposure values by 2.7% (2.0-3.4) and 2.1% (1.3-2.9), respectively, 15 minutes after exposure to filtered air (0 ppb). Exposure to ozone reduced these increases in a concentration-dependent manner. After 120-ppb exposure, FEV1 and FVC decreased by 1.7% (1.1-2.3) and 0.8% (0.3-1.3), respectively. A similar concentration-dependent pattern was still discernible 22 hours after exposure. At 4 hours after exposure, plasma CC16 increased from preexposure levels in an ozone concentration-dependent manner. Sputum neutrophils obtained 22 hours after exposure showed a marginally significant increase in a concentration-dependent manner (P = 0.012), but proinflammatory cytokines (IL-6, IL-8, and tumor necrosis factor-α) were not significantly affected. CONCLUSIONS: Exposure to ozone at near ambient levels induced lung function effects, airway injury, and airway inflammation in older healthy adults. Clinical trial registered with www.clinicaltrials.gov (NCT01487005).


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Inflamación/fisiopatología , Exposición por Inhalación/efectos adversos , Pulmón/fisiopatología , Ozono/efectos adversos , Anciano , Anciano de 80 o más Años , California , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York , North Carolina
4.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L752-L764, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30091382

RESUMEN

The function and cell surface phenotype of lung macrophages vary within the respiratory tract. Alterations in the bioenergetic profile of macrophages may also be influenced by their location within the respiratory tract. This study sought to characterize the bioenergetic profile of macrophages sampled from different locations within the respiratory tract at baseline and in response to ex vivo xenobiotic challenge. Surface macrophages recovered from healthy volunteers by induced sputum and by bronchial and bronchoalveolar lavage were profiled using extracellular flux analyses. Oxygen consumption and extracellular acidification rates were measured at rest and after stimulation with lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), or 1,2-naphthoquinone (1,2-NQ). Oxygen consumption and extracellular acidification rates were highly correlated for all macrophage samples. Induced sputum macrophages had relatively higher oxygen consumption and extracellular acidification rates and were largely reliant on glycolysis. In contrast, bronchial fraction and bronchoalveolar macrophages depended more heavily on mitochondrial respiration. Bronchoalveolar macrophages showed elevated LPS-induced cytokine responses. Unlike their autologous peripheral blood monocytes, lung macrophages from any source did not display bioenergetic changes following LPS stimulation. The protein kinase C activator PMA did not affect mitochondrial respiration, whereas the air pollutant 1,2-NQ induced marked mitochondrial dysfunction in bronchoalveolar and bronchial fraction macrophages. The bioenergetic characteristics of macrophages from healthy individuals are dependent on their location within the respiratory tract. These findings establish a regional bioenergetic profile for macrophages from healthy human airways that serves as a reference for changes that occur in disease.


Asunto(s)
Bronquios/metabolismo , Lavado Broncoalveolar , Mediadores de Inflamación/metabolismo , Macrófagos Alveolares/metabolismo , Esputo/metabolismo , Bronquios/efectos de los fármacos , Carcinógenos/administración & dosificación , Células Cultivadas , Metabolismo Energético , Femenino , Glucólisis , Humanos , Lipopolisacáridos/farmacología , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Masculino , Esputo/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
5.
Toxicol Appl Pharmacol ; 342: 99-107, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407367

RESUMEN

Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/metabolismo , Mitocondrias/metabolismo , Material Particulado/toxicidad , Mucosa Respiratoria/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/toxicidad , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Mucosa Respiratoria/efectos de los fármacos
6.
Biochim Biophys Acta ; 1860(12): 2771-81, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27451958

RESUMEN

Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Ozono/administración & dosificación , Neumonía/inducido químicamente , Sistema Respiratorio/efectos de los fármacos , Administración por Inhalación , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/patología , Colesterol/inmunología , Colesterol/metabolismo , Citocinas/genética , Citocinas/inmunología , Eicosanoides/inmunología , Eicosanoides/metabolismo , Regulación de la Expresión Génica , Humanos , Isoprostanos/inmunología , Isoprostanos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/inmunología , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Neumonía/genética , Neumonía/inmunología , Neumonía/patología , Sistema Respiratorio/inmunología , Sistema Respiratorio/patología , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
7.
Chem Res Toxicol ; 28(12): 2411-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26605980

RESUMEN

Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 µM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 µM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.


Asunto(s)
Estrés Oxidativo , Proteínas/química , Ácidos Sulfénicos/química , Células Cultivadas , Humanos , Modelos Biológicos , Naftoquinonas/toxicidad , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas/efectos de los fármacos , Ácidos Sulfénicos/toxicidad
8.
Redox Biol ; 73: 103199, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810423

RESUMEN

Intracellular redox homeostasis in the airway epithelium is closely regulated through adaptive signaling and metabolic pathways. However, inhalational exposure to xenobiotic stressors such as secondary organic aerosols (SOA) can alter intracellular redox homeostasis. Isoprene hydroxy hydroperoxide (ISOPOOH), a ubiquitous volatile organic compound derived from the atmospheric photooxidation of biogenic isoprene, is a major contributor to SOA. We have previously demonstrated that exposure of human airway epithelial cells (HAEC) to ISOPOOH induces oxidative stress through multiple mechanisms including lipid peroxidation, glutathione oxidation, and alterations of glycolytic metabolism. Using dimedone-based reagents and copper catalyzed azo-alkynyl cycloaddition to tag intracellular protein thiol oxidation, we demonstrate that exposure of HAEC to micromolar levels of ISOPOOH induces reversible oxidation of cysteinyl thiols in multiple intracellular proteins, including GAPDH, that was accompanied by a dose-dependent loss of GAPDH enzymatic activity. These results demonstrate that ISOPOOH induces an oxidative modification of intracellular proteins that results in loss of GAPDH activity, which ultimately impacts the dynamic regulation of the intracellular redox homeostatic landscape in HAEC.


Asunto(s)
Células Epiteliales , Oxidación-Reducción , Estrés Oxidativo , Compuestos de Sulfhidrilo , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hemiterpenos/metabolismo , Peróxidos/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L712-24, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23997175

RESUMEN

Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mitochondrial iron is a pivotal event mediating oxidant generation and biological effect. In vitro exposure of human bronchial epithelial cells to silica reduced intracellular iron, which resulted in increases in both the importer divalent metal transporter 1 expression and metal uptake. Diminished mitochondrial (57)Fe concentrations following silica exposure confirmed particle sequestration of cell iron. Preincubation of cells with excess ferric ammonium citrate increased cell, nuclear, and mitochondrial metal concentrations and prevented significant iron loss from mitochondria following silica exposure. Cell and mitochondrial oxidant generation increased after silica incubation, but pretreatment with iron diminished this generation of reactive oxygen species. Silica exposure activated MAP kinases (ERK and p38) and altered the expression of transcription factors (nF-κB and NF-E2-related factor 2), proinflammatory cytokines (interleukin-8 and -6), and apoptotic proteins. All of these changes in indexes of biological effect were either diminished or inhibited by cell pretreatment with iron. Finally, percentage of neutrophils and total protein concentrations in an animal model instilled with silica were decreased by concurrent exposure to iron. We conclude that an initiating event in the response to particulate matter is a sequestration of cell and mitochondrial iron by endocytosed particle. The resultant oxidative stress and biological response after particle exposure are either diminished or inhibited by increasing the cell iron concentration.


Asunto(s)
Bronquios/efectos de los fármacos , Hierro/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/farmacología , Dióxido de Silicio/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Bronquios/citología , Bronquios/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Ferritinas/metabolismo , Citometría de Flujo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Oxidantes/farmacología , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Part Fibre Toxicol ; 10(1): 58, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24245863

RESUMEN

BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure to concentrated ambient fine particles (CAFP) with MMAD ≤ 2.5 microns in ex-smokers and lifetime smokers. METHODS: Eleven subjects, aged 35-74 years, came to the laboratory 5 times; a training day and two exposure days separated by at least 3 weeks, each with a post-exposure visit 22 h later. Double-blind and counterbalanced exposures to "clean air" (mean 1.5 ± 0.6 µg/m3) or CAFP (mean 108.7 ± 24.8 µg/m3 ) lasted 2 h with subjects at rest. RESULTS: At 3 h post-exposure subjects' DTPA clearance half-time significantly increased by 6.3 min per 100 µg/m3 of CAFP relative to "clean air". At 22 h post-exposure they showed significant reduction of 4.3% per 100 µg/m3 in FEV1 and a significant DLCO decrease by 11.1% per 100 µg/m3 of CAFP relative to "clean air". At both 3 h and 22 h the HDL cholesterol level significantly decreased by 4.5% and 4.1%, respectively. Other blood chemistries and markers of lung injury, inflammation and procoagulant activity were within the normal range of values at any condition. CONCLUSIONS: The results suggest that an acute 2 h resting exposure of smokers and ex-smokers to fine ambient particulate matter may transiently affect pulmonary function (spirometry and DLCO) and increase DTPA clearance half-time. Except for a post exposure decrease in HDL no other markers of pulmonary inflammation, prothrombotic activity and lung injury were significantly affected under the conditions of exposure.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Pulmón/fisiopatología , Fumar/fisiopatología , Adulto , Anciano , Femenino , Humanos , Exposición por Inhalación , Masculino , Persona de Mediana Edad
11.
Inhal Toxicol ; 25(3): 134-40, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23421485

RESUMEN

CONTEXT: Investigations of cell/molecular level effects of in vivo exposure of airway mucosa of experimental animals to common irritant gases have demonstrated structural and physiological changes reflective of breaches in epithelial barrier function, presence of inflammatory cell infiltrate and compromised ciliary function. These experimental animal studies provided useful perspectives of plausible, but more subtle pathologic outcomes having relevance to lifestyle exposure to gaseous environmental irritants including tobacco smoke. METHODS: Freeze-fracture technology was applied to ultrastructural examination of large airway epithelium, with appropriate controls, from guinea pigs exposed to ozone and of nasal mucosa of human subjects exposed to ozone or sulfur dioxide, and nasal mucosa of active smokers. RESULTS: We documented substantive membrane structural changes to tight junctional complexes and cilia as well as an infiltrate of neutrophils into the surface mucosal layer in exposed animals. These patterns also were evident but not as pervasive among human subjects acutely exposed experimentally to irritant gases and those chronically exposed by their lifestyle to tobacco smoke. DISCUSSION: Our intent was to characterize respiratory tract mucosal membrane disorganization associated with high level acute irritant exposures in an experimental animal model and to evaluate evidence of similar but perhaps more subtle pathologic change associated with lower level experimental or lifestyle exposures. Our studies demonstrate continuity, albeit subtle, of pathologic change from high dosage experimental animal exposure to low dosage human exposures. CONCLUSIONS: This study represents the first report of ultrastructural airway epithelial membrane anomalies associated with lifestyle exposure to tobacco smoke irritants.


Asunto(s)
Mucosa Nasal/efectos de los fármacos , Oxidantes Fotoquímicos/toxicidad , Ozono/toxicidad , Fumar/efectos adversos , Dióxido de Azufre/toxicidad , Contaminación por Humo de Tabaco/efectos adversos , Animales , Biopsia , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Cotinina/orina , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Técnica de Fractura por Congelación/métodos , Cobayas , Humanos , Estilo de Vida , Masculino , Microscopía Electrónica de Transmisión , Mucosa Nasal/ultraestructura , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Fumar/sangre , Fumar/patología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/ultraestructura , Contaminación por Humo de Tabaco/análisis , Tráquea/efectos de los fármacos , Tráquea/ultraestructura
12.
Redox Biol ; 61: 102646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867944

RESUMEN

While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC). We used high-resolution live cell imaging of HAEC expressing the genetically encoded ratiometric biosensors Grx1-roGFP2, iNAP1, or HyPer, to assess changes in the cytoplasmic ratio of oxidized glutathione to reduced glutathione (GSSG:GSH), and the flux of NADPH and H2O2, respectively. Non-cytotoxic exposure to ISOPOOH resulted in a dose-dependent increase of GSSG:GSH in HAEC that was markedly potentiated by prior glucose deprivation. ISOPOOH-induced increase in glutathione oxidation were accompanied by concomitant decreases in intracellular NADPH. Following ISOPOOH exposure, the introduction of glucose resulted in a rapid restoration of GSH and NADPH, while the glucose analog 2-deoxyglucose resulted in inefficient restoration of baseline GSH and NADPH. To elucidate bioenergetic adaptations involved in combatting ISOPOOH-induced oxidative stress we investigated the regulatory role of glucose-6-phosphate dehydrogenase (G6PD). A knockout of G6PD markedly impaired glucose-mediated recovery of GSSG:GSH but not NADPH. These findings reveal rapid redox adaptations involved in the cellular response to ISOPOOH and provide a live view of the dynamic regulation of redox homeostasis in human airway cells as they are exposed to environmental oxidants.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Disulfuro de Glutatión/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Células Epiteliales/metabolismo , Estrés Oxidativo , Sistema Respiratorio/metabolismo , Glucosa/farmacología , NADP/metabolismo
13.
Redox Biol ; 51: 102281, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306372

RESUMEN

Exposure to respirable air particulate matter (PM2.5) in ambient air is associated with morbidity and premature deaths. A major source of PM2.5 is the photooxidation of volatile plant-produced organic compounds such as isoprene. Photochemical oxidation of isoprene leads to the formation of hydroperoxides, environmental oxidants that lead to inflammatory (IL-8) and adaptive (HMOX1) gene expression in human airway epithelial cells (HAEC). To examine the mechanism through which these oxidants alter intracellular redox balance, we used live-cell imaging to monitor the effects of isoprene hydroxyhydroperoxides (ISOPOOH) in HAEC expressing roGFP2, a sensor of the glutathione redox potential (EGSH). Non-cytotoxic exposure of HAEC to ISOPOOH resulted in a rapid and robust increase in EGSH that was independent of the generation of intracellular or extracellular hydrogen peroxide. Our results point to oxidation of GSH through the redox relay initiated by glutathione peroxidase 4, directly by ISOPOOH or indirectly by ISOPOOH-generated lipid hydroperoxides. We did not find evidence for involvement of peroxiredoxin 6. Supplementation of HAEC with polyunsaturated fatty acids enhanced ISOPOOH-induced glutathione oxidation, providing additional evidence that ISOPOOH initiates lipid peroxidation of cellular membranes. These findings demonstrate that ISOPOOH is a potent environmental airborne hydroperoxide with the potential to contribute to oxidative burden of human airway posed by inhalation of secondary organic aerosols.


Asunto(s)
Estrés Oxidativo , Material Particulado , Butadienos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Hemiterpenos , Humanos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Oxidación-Reducción
14.
Environ Int ; 167: 107407, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850080

RESUMEN

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/farmacología , Femenino , Aceites de Pescado/farmacología , Humanos , Pulmón , Masculino , Ozono/efectos adversos , Pruebas de Función Respiratoria
15.
Occup Environ Med ; 68(10): 783-5, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21441173

RESUMEN

OBJECTIVE: To determine if the GSTM1 null genotype is a risk factor for increased inflammatory response to inhaled endotoxin. METHODS: 35 volunteers who had undergone inhalation challenge with a 20 000 endotoxin unit dose of Clinical Center Reference Endotoxin (CCRE) were genotyped for the GSTM1 null polymorphism. Parameters of airway and systemic inflammation observed before and after challenge were compared in GSTM1 null (n=17) and GSTM1 (n=18) sufficient volunteers. RESULTS: GSTM1 null volunteers had significantly increased circulating white blood cells (WBCs), polymorphonuclear neutrophils (PMNs), platelets and sputum PMNs (% sputum PMNs and PMNs/mg sputum) after CCRE challenge. GSTM1 sufficient volunteers had significant, but lower increases in circulating WBCs, PMNs and % sputum PMNs, and no increase in platelets or PMNs/mg sputum. Linear regression analysis adjusted for baseline values of the entire cohort revealed that the GSTM1 null genotype significantly increased circulating WBCs, platelets and % sputum PMNs after challenge. CONCLUSION: These data support the hypothesis that the GSTM1 null genotype is a risk factor for increased acute respiratory and systemic inflammatory response to inhaled CCRE. These data are consistent with other observations that the GSTM1 null genotype is associated with increased respiratory, systemic and cardiovascular effects linked to ambient air particulate matter exposure and indicate that the GSTM1 null genotype should be considered a risk factor for adverse health effects associated with exposure to environmental endotoxin.


Asunto(s)
Endotoxinas/toxicidad , Glutatión Transferasa/genética , Granulocitos/química , Exposición por Inhalación/efectos adversos , Adulto , Endotoxinas/administración & dosificación , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Recuento de Leucocitos , Polimorfismo Genético , Factores de Riesgo , Esputo/química
16.
Part Fibre Toxicol ; 8(1): 2, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247485

RESUMEN

BACKGROUND: Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP). Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm). Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM) for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane. RESULTS: Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal) and scattered transmitted light (Darkfield) along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependent internalization process. CONCLUSIONS: DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron density. DF-CLSM is especially well suited to the task of establishing the spatial localization of nanoparticles within cells, a critical topic in nanotoxicology. This technique has advantages to 2D darkfield microscopy as it visualizes nanoparticles in 3D using confocal microscopy. Use of this technique should aid toxicological studies related to observation of NP interactions with biological endpoints at cellular and subcellular levels.


Asunto(s)
Endocitosis/fisiología , Pulmón/citología , Microscopía Confocal/métodos , Nanopartículas/ultraestructura , Animales , Línea Celular , Colorantes Fluorescentes/metabolismo , Humanos , Tamaño de la Partícula , Poliestirenos/metabolismo , Titanio/metabolismo
17.
J Allergy Clin Immunol ; 126(3): 537-44.e1, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20816188

RESUMEN

BACKGROUND: Asthma is a known risk factor for acute ozone-associated respiratory disease. Ozone causes an immediate decrease in lung function and increased airway inflammation. The role of atopy and asthma in modulation of ozone-induced inflammation has not been determined. OBJECTIVE: We sought to determine whether atopic status modulates ozone response phenotypes in human subjects. METHODS: Fifty volunteers (25 healthy volunteers, 14 atopic nonasthmatic subjects, and 11 atopic asthmatic subjects not requiring maintenance therapy) underwent a 0.4-ppm ozone exposure protocol. Ozone response was determined based on changes in lung function and induced sputum composition, including airway inflammatory cell concentration, cell-surface markers, and cytokine and hyaluronic acid concentrations. RESULTS: All cohorts experienced similar decreases in lung function after ozone. Atopic and atopic asthmatic subjects had increased sputum neutrophil numbers and IL-8 levels after ozone exposure; values did not significantly change in healthy volunteers. After ozone exposure, atopic asthmatic subjects had significantly increased sputum IL-6 and IL-1beta levels and airway macrophage Toll-like receptor 4, Fc(epsilon)RI, and CD23 expression; values in healthy volunteers and atopic nonasthmatic subjects showed no significant change. Atopic asthmatic subjects had significantly decreased IL-10 levels at baseline compared with healthy volunteers; IL-10 levels did not significantly change in any group with ozone. All groups had similar levels of hyaluronic acid at baseline, with increased levels after ozone exposure in atopic and atopic asthmatic subjects. CONCLUSION: Atopic asthmatic subjects have increased airway inflammatory responses to ozone. Increased Toll-like receptor 4 expression suggests a potential pathway through which ozone generates the inflammatory response in allergic asthmatic subjects but not in atopic subjects without asthma.


Asunto(s)
Asma/fisiopatología , Hipersensibilidad Inmediata/complicaciones , Ozono/farmacología , Adulto , Asma/inmunología , Femenino , Citometría de Flujo , Humanos , Hipersensibilidad Inmediata/fisiopatología , Inflamación/inducido químicamente , Inflamación/fisiopatología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Masculino , Pruebas de Función Respiratoria , Adulto Joven
18.
Am J Respir Cell Mol Biol ; 42(1): 88-95, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19329556

RESUMEN

Exposure to diesel exhaust particles (DEP) has been associated with adverse health outcomes such as inflammation, adjuvancy, and mutagenesis. However, the molecular mechanisms by which DEP inhalation exerts these effects are still largely unknown. We previously reported that exposure to DEP activates the transcription factor Stat3 in airway epithelial cells, a primary target cell of inhaled DEP. To elucidate the functional role of Stat3 activation in these cells, we investigated the function of Stat3 in DEP-induced expression of the p21 gene in the human bronchial epithelial cell line BEAS-2B. We report that DEP exposure induces increased levels of p21 mRNA and protein in a manner that is independent of p53 and Sp1 expression or DNA binding to the p21 gene. Using chromatin immunoprecipitation assays and expression of a dominant-negative Stat3 mutant, we show that activation of Stat3 and its binding to the p21 promoter are required for DEP-induced expression of p21, suggesting that Stat3 plays an essential role in the induction of p21 by DEP. Additional experiments demonstrated that activation of p21 gene expression is dependent on the activation of epidermal growth factor receptor and Src kinase activities. Finally, we provide evidence suggesting that DEP exposure can inhibit the proliferation of human bronchial epithelial cells, suggesting a functional role of p21 activation airway epithelial cells exposed to DEP.


Asunto(s)
Bronquios/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Células Epiteliales/efectos de los fármacos , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción STAT3/metabolismo , Transcripción Genética , Emisiones de Vehículos , Familia-src Quinasas/metabolismo , Bronquios/metabolismo , Línea Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Células Epiteliales/citología , Humanos , Material Particulado/metabolismo , Material Particulado/farmacología , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
19.
Toxicol Appl Pharmacol ; 243(1): 46-54, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19914270

RESUMEN

Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-8/metabolismo , Mucosa Respiratoria/citología , Emisiones de Vehículos/toxicidad , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Humanos , Interleucina-8/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
20.
Am J Respir Crit Care Med ; 179(11): 1034-42, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19234105

RESUMEN

RATIONALE: Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. OBJECTIVES: To characterize the effects of acute exposure to ambient ultrafine particles in young healthy humans. METHODS: Nineteen healthy nonsmoking male and female subjects between the ages of 18 and 35 were exposed to filtered air or to an atmosphere in which captured ultrafine (<0.16 microm) particles were concentrated by a factor of up to 20-fold over ambient levels with the use of particle concentrators fitted with size-selective outlets (ultrafine concentrated ambient particles [UFCAPs]). Subjects underwent bronchoalveolar lavage 18 hours after each exposure. Cardiovascular endpoints measured included pulmonary function, clinical chemistry, and hematological parameters, as well as heart rate variability and repolarization indices. MEASUREMENTS AND MAIN RESULTS: Exposure to UFCAPs was statistically associated with an increase in frequency domain markers of heart rate variability, specifically indicative of elevated vagal input to the heart. Consistent with this finding were increases in the variance associated with the duration of the QT interval. In addition, UFCAP exposure resulted in a significant increase in blood levels of the fibrin degradation product D-dimer as well as a modest elevation in the inflammatory chemokine IL-8 recovered in the lavage fluid. CONCLUSIONS: These findings show mild inflammatory and prothrombic responses and are suggestive of alterations in cardiac repolarization induced by UFCAP inhalation.


Asunto(s)
Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Frecuencia Cardíaca , Interleucina-8/metabolismo , Material Particulado/efectos adversos , Adolescente , Adulto , Líquido del Lavado Bronquioalveolar , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA