Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Carcinogenesis ; 28(12): 2624-31, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17698969

RESUMEN

The MYC oncogene induces both cell proliferation and apoptosis. The apoptotic function of MYC is thought to inhibit carcinogenesis; thus, when disrupted, tumorigenic potential is increased. Both MYC and transforming growth factor alpha (TGFalpha) are commonly over-expressed in hepatocellular carcinomas, and transgenic mice expressing these genes rapidly develop tumors via the suppression of MYC-induced apoptosis by the growth factor. However, the nature of the interactions between MYC and TGFalpha are not well understood. Specifically, it is unclear whether TGFalpha acts only as an anti-apoptotic factor in its interactions with MYC or whether it has substantial effects on cell growth. We investigated whether TGFalpha can provide additional mitogenic signals if it is not required to act as an anti-apoptotic factor. We demonstrate that expression of MYC and TGFalpha in liver progenitor cells (known as oval cells) results in enhanced cell proliferation in culture and the generation of poorly differentiated tumors after inoculation into nude mice. We further demonstrate that while the apoptosis-deficient T58A and S71F alleles of MYC retain their ability to promote oval cell proliferation, they have opposite growth interactions with TGFalpha. The T58A allele has a stimulatory effect on both proliferation and tumorigenicity. In contrast, co-expression of the S71F allele reduces proliferation and slows tumor development. We conclude that the tumorigenic growth effects of MYC in TGFalpha-expressing liver progenitor cells are not solely dependent on its apoptotic activity.


Asunto(s)
Transformación Celular Neoplásica , Hepatocitos/patología , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-myc/fisiología , Células Madre/patología , Factor de Crecimiento Transformador alfa/fisiología , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Desnudos , Mutación , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Células Madre/metabolismo , Factor de Crecimiento Transformador alfa/genética
2.
J Clin Invest ; 110(2): 193-202, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12122111

RESUMEN

One of the earliest TNF-dependent events to occur during liver regeneration is the activation of the transcription factor NF-kappaB through TNF receptor type 1. NF-kappaB activation in the liver can have both antiapoptotic and proliferative effects, but it is unclear which liver cell types, hepatocytes or nonparenchymal cells (NPCs), contribute to these effects. To specifically evaluate the role of hepatocyte NF-kappaB, we created GLVP/DeltaN-IkappaB(alpha) transgenic mice, in which expression of a deletion mutant of IkappaB(alpha) (DeltaN-IkappaB(alpha)) was induced in hepatocytes after injection of mifepristone. In control mice, injection of 25 microg/kg TNF caused NF-kappaB nuclear translocation in virtually all hepatocytes by 30 minutes and no detectable apoptosis, while in mice expressing DeltaN-IkappaB(alpha), NF-kappaB nuclear translocation was blocked in 45% of hepatocytes, leading to apoptosis 4 hours after TNF injection. In contrast, expression of DeltaN-IkappaBalpha in hepatocytes during the first several hours after partial hepatectomy did not lead to apoptosis or decreased proliferation. As NF-kappaB activation was not inhibited in liver NPCs, it is likely that these cells are responsible for mediating the proliferative and antiapoptotic effects of NF-kappaB during liver regeneration.


Asunto(s)
Apoptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proteínas I-kappa B , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología , Transporte Activo de Núcleo Celular , Animales , División Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica/efectos de los fármacos , Hepatectomía , Hepatocitos/citología , Interleucina-6/biosíntesis , Regeneración Hepática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mifepristona/farmacología , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Factor de Transcripción STAT3 , Transactivadores/metabolismo
3.
J Immunol ; 176(4): 2522-8, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16456013

RESUMEN

TNF and IL-6 are considered to be important to the initiation or priming phase of liver regeneration. However, the signaling pathways that lead to the production of these cytokines after partial hepatectomy (PH) have not been identified. Enteric-derived LPS appears to be important to liver regeneration, possibly by stimulating proinflammatory cytokine production after surgery. To determine whether LPS signaling pathways are involved in the regulation of the proinflammatory cytokines TNF and IL-6 during the priming phase of liver regeneration, we performed PH on mice lacking the TLRs Tlr4 and Tlr2, the LPS coreceptor, Cd14, and Myd88, an adapter protein involved in most TLR and IL-1R pathways. In MyD88 knockout (KO) mice after PH, both liver Tnf mRNA and circulating IL-6 levels were severely depressed compared with heterozygous or wild-type mice. Activation of STAT-3 and three STAT-3 responsive genes, Socs3, Cd14, and serum amyloid A2 were also blocked. In contrast, Tlr4, Tlr2, and Cd14 KO mice showed no deficits in the production of IL-6. Surprisingly, none of these KO mice showed any delay in hepatocyte replication. These data indicate that the LPS receptor TLR4, as well as TLR2 and CD14, do not play roles in regulating cytokine production or DNA replication after PH. In contrast, MyD88-dependent pathways appear to be responsible for TNF, IL-6, and their downstream signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Regeneración Hepática , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Células Cultivadas , ADN/genética , Hepatectomía , Inflamación/metabolismo , Interleucina-6/biosíntesis , Receptores de Lipopolisacáridos/metabolismo , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , FN-kappa B/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
4.
Hepatology ; 41(4): 906-15, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15799032

RESUMEN

Hepatocytes and intrahepatic progenitor cells (oval cells) have similar responses to most growth factors but rarely proliferate together. Oval cells constitute a reserve compartment that is activated when hepatocyte proliferation is inhibited. Interferon gamma (IFN-gamma) increases in liver injury that involves oval cell responses, but it is not upregulated during liver regeneration after partial hepatectomy. Based on these observations, we used well-characterized lines of hepatocytes (AML-12 cells) and oval cells (LE-6 cells) to investigate the potential mechanisms that regulate differential growth responses in hepatocytes and oval cells. We show that IFN-gamma blocks hepatocyte proliferation in vivo, and that in combination with either tumor necrosis factor (TNF) or lipopolysaccharide (LPS), it causes cell cycle arrest in hepatocytes but stimulates oval cell proliferation in cultured cells. The hepatocyte cell cycle arrest is reversible, is p53-independent, and is not associated with apoptosis. Treatment of AML-12 hepatocytes with IFN-gamma/LPS or IFN-gamma/TNF, but not with individual cytokines, induced NO synthase and generated NO, while similarly treated oval cells produced little if any NO. Generation of NO by an NO donor reproduced the inhibitory effect of the cytokine combinations on AML-12 cell replication, while NO inhibitors abolish the replication deficiency. In conclusion, we propose that IFN-gamma, in conjunction with TNF or LPS, can both inhibit hepatocyte proliferation through the generation of NO and stimulate oval cell replication. The response of hepatocytes and oval cells to cytokine combinations may contribute to the differential proliferation of these cells in hepatic growth processes.


Asunto(s)
Hepatocitos/citología , Interferón gamma/farmacología , Hígado/citología , Células Madre/citología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Combinación de Medicamentos , Hepatectomía/métodos , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo II , Ratas , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/farmacología
5.
J Biol Chem ; 279(33): 34530-6, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15199050

RESUMEN

Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.


Asunto(s)
Receptores ErbB/metabolismo , Hepatocitos/metabolismo , Activación Transcripcional , Proteínas ADAM , Proteína ADAM17 , Animales , Western Blotting , Bromodesoxiuridina/farmacología , Tampones (Química) , División Celular , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Colorantes/farmacología , Medio de Cultivo Libre de Suero/metabolismo , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Humanos , Ligandos , Hígado/fisiología , Metaloendopeptidasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Regeneración , Transducción de Señal , Timidina/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA